A COMPREHENSIVE ANALYSIS OF DISSOLVED GASES IN OIL TO MONITOR SUSPICIOUS FAULTS OF DISTRIBUTION TRANSFORMERS IN SOLAR FARM

Supplementary Files

PDF

Keywords

Distribution Transformer
Dissolved Gas Analysis
Condition Monitoring
TDCG Method
Key Gas Ratio Method

How to Cite

Luckose, V., Khan, A. R., Abdul Razak, N. F. H., & Subramani, G. . (2025). A COMPREHENSIVE ANALYSIS OF DISSOLVED GASES IN OIL TO MONITOR SUSPICIOUS FAULTS OF DISTRIBUTION TRANSFORMERS IN SOLAR FARM. Journal of Engineering & Technological Advances , 10(2), 82-105. https://doi.org/10.35934/segi.v10i2.161

Abstract

Distribution transformer is a unique asset in a solar farm. While solar panels capture sunlight, the inverter converts it into usable electricity, and the distribution transformer is the key component that enables the seamless delivery of this energy. Fault-free operation of this transformer ensures a proper power supply to the grid. Condition monitoring of transformers is critical for ensuring reliability and extending the operational lifespan at solar farms. Data-driven condition monitoring is one of the most effective approaches for enhancing the operational lifetime of this transformer. This research presents a comprehensive analysis of Dissolved Gas Analysis (DGA) data to predict potential faults in distribution transformers. Utilizing IEEE standards as a validation framework, the Key gas ratio method, Total Dissolved Combustible Gas (TDCG), and Principal gas concentration approaches were employed to identify faults and assess transformers health. The results were analysed using MATLAB software with an M-code algorithm. In this paper, the exceedance level of TDCG (2324 ppm) in transformer 2 is highlighted. Additionally, the CO?/CO ratios for station transformers 1 to 6 were 7.5, 5.5, 7.6, 7.3, 7.5, and 7.9, respectively. However, in transformer 4, the CH?/H? ratio was also noted to be 0.09. This concentration exceeded the IEEE standard thresholds and was indicative of overheated cellulose and partial discharge faults respectively. The proposed scheme is designed to assist in reducing suspected faults in transformers by enabling timely action based on validated data. This monitoring process can make a significant contribution to reducing the maintenance cost of a solar farm.

https://doi.org/10.35934/segi.v10i2.161

References

Abdelwahab, S. A. M., Taha, I. B. M., Fahim, R., & Ghoneim, S. S. M. (2025). Transformer fault diagnose intelligent system based on DGA methods. Scientific Reports, 15(1), 8263. https://doi.org/10.1038/s41598-024-78293-7

Al-Ameri, S. M., Alawady, A. A., Abdul-Malek, Z., Noorden, Z. A., Yousof, M. F. M., Salem, A. A., Mosaad, M. I., & Abu-Siada, A. (2022). Frequency response analysis: An enabling technology to detect internal faults within critical electric assets. Applied Sciences, 12(18), Article 9201. https://doi.org/10.3390/app12189201

Bakar, N. A., Abu-Siada, A., & Islam, S. (2014). A review of dissolved gas analysis measurement and interpretation techniques. IEEE Electrical Insulation Magazine, 30(3), 39–49. https://doi.org/10.1109/MEI.2014.6804740

Bustamante, S., Manana, M., Arroyo, A., Castro, P., Laso, A., & Martinez, R. (2019). Dissolved gas analysis equipment for online monitoring of transformer oil: A review. Sensors, 19(19), Article 4057. https://doi.org/10.3390/s19194057

Deng, X., Fang, H., & Li, M. (2017). The detection of dissolved gases in transformer oil by gas chromatography with helium ionization detector. Journal of Physics: Conference Series, 870, 012008. https://doi.org/10.1088/1742-6596/870/1/012008

Fan, J., Fu, C., Yin, H., Wang, Y., & Jiang, Q. (2019). Power transformer condition assessment based on online monitor with SOFC chromatographic detector. International Journal of Electrical Power & Energy Systems, 113, Article 105805. https://doi.org/10.1016/j.ijepes.2019.105805

Ibanga, J., & Dawasa, I. M. (2024). Power distribution transformer maintenance skills required by electrical engineering technology students of polytechnics in North-East Nigeria. OJ-TP Journal of Technical and Vocational Education, 9(2), 49–59.

IEEE Power & Energy Society. (2006). IEEE Std C57.14-2005: IEEE guide for the interpretation of gases generated in silicone-immersed transformers. IEEE.

IEEE. (2019). IEEE guide for the interpretation of gases generated in mineral oil-immersed transformers (IEEE Std C57.104-2019). IEEE Standards Association. https://standards.ieee.org/ieee/C57.104/7476/

Islam, N., Khan, R., Das, S. K., Sarker, S. K., Islam, M. M., Akter, M., & Muyeen, S. M. (2023). Power transformer health condition evaluation: A deep generative model aided intelligent framework. Electric Power Systems Research, 218, Article 109201. https://doi.org/10.1016/j.epsr.2023.109201

Jusner, P., Bausch, F., Schiehser, S., & others. (2022). Protocol for characterizing the molar mass distribution and oxidized functionality profiles of aged transformer papers by gel permeation chromatography (GPC). Cellulose, 29, 2241–2256. https://doi.org/10.1007/s10570-022-04464-2

Lal, A., Mishra, A., Agrawal, A., Tamrakar, R. K., Tripathi, N., & Chouhan, S. K. (2025). Analyzing the influence of ZnO nanoparticles on transformer oil using dissolved gas analysis. e-Prime – Advances in Electrical Engineering, Electronics and Energy, 12(4), Article 101023. https://doi.org/10.1016/j.prime.2025.101023

Mahmoudi, N., Samimi, M. H., & Mohseni, H. (2019). Experiences with transformer diagnosis by DGA: Case studies. IET Generation, Transmission & Distribution. https://doi.org/10.1049/iet-gtd.2019.1056

Mbembati, H., & Bakiri, H. (2024). A novel approach for oil-based transformer fault identification in electrical secondary distribution networks. Heliyon, 10(5), e26336. https://doi.org/10.1016/j.heliyon.2024.e26336

Mharakurwa, E. T., Nyakoe, G. N., & Akumu, A. O. (2019). Power transformer fault severity estimation based on dissolved gas analysis and energy of fault formation technique. Journal of Energy, 2019, Article ID 9674054. https://doi.org/10.1155/2019/9674054

Muthaza, M. Z., Sy, S. Y., & Zulkifli, M. (2022). Thermal analysis on transformer in substation: Transformer material selection. Progress in Engineering Application and Technology, 3(2), Article 051. https://doi.org/10.30880/peat.2022.03.02.051

Nadolny, Z. (2023). Design and optimization of power transformer diagnostics. Energies, 16(18), Article 6466. https://doi.org/10.3390/en16186466

Nanfak, A., Samuel, E., Fofana, I., Meghnefi, F., Ngaleu, M. G., & Kom, C. H. (2024). Traditional fault diagnosis methods for mineral oil-immersed power transformer based on dissolved gas analysis: Past, present and future. IET Nanodielectrics. https://doi.org/10.1049/nde2.12082

Ohanu, C. P., Ohanu, I. B., Ogbuefi, U. C., & Odo, K. C. (2022). Power quality improvement of a distribution network for sustainable power supply. International Journal of Integrated Engineering, 14(1), Article 033. https://doi.org/10.30880/ijie.2022.14.01.033

Prasojo, R. A., Gumilang, H., Suwarno, Maulidevi, N. U., & Soedjarno, B. A. (2020). A fuzzy logic model for power transformer faults’ severity determination based on gas level, gas rate, and dissolved gas analysis interpretation. Energies, 13(4), Article 1009. https://doi.org/10.3390/en13041009

Riedmann, C., Schichler, U., Häusler, W., & others. (2022). Online dissolved gas analysis used for transformers – possibilities, experiences, and limitations. Elektrotechnik & Informationstechnik, 139(?), 88–97. https://doi.org/10.1007/s00502-022-00992-8

Siswanto, A., Rohman, A., Suprijadi, S., Baehaqi, M., & Arifudin, A. (2022). Analisis karakteristik minyak transformator menggunakan pengujian dissolved gas analysis (DGA) pada IBT 1 gardu induk. Furnitek Scientific, 12(1), 30–42. https://doi.org/10.54757/fs.v12i1.142

Sutikno, H., Prasojo, R. A., & Suwarno. (2021). Characteristics of dissolved gas evolution rate under different loading factors. In Proceedings of the 3rd International Conference on High Voltage Engineering and Power Systems (ICHVEPS) (pp. 122–125). Bandung, Indonesia. https://doi.org/10.1109/ICHVEPS53178.2021.9600978

Suwarno, S., Sutikno, H., Prasojo, R. A., & Abu-Siada, A. (2024). Machine learning based multi-method interpretation to enhance dissolved gas analysis for power transformer fault diagnosis. Heliyon, 10(4), e25975. https://doi.org/10.1016/j.heliyon.2024.e25975

Xing, M., Ding, W., Li, H., & Zhang, T. (2022). A power transformer fault prediction method through temporal convolutional network on dissolved gas chromatography data. Journal of Energy, 2022, Article ID 5357412. https://doi.org/10.1155/2022/5357412

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Array