Abstract
This study explores the synthesis and characterization of arrowroot starch-based degradable plastics reinforced with zinc oxide (ZnO). The experimental design incorporated the use of arrowroot tuber starch in varying concentrations of 10, 15, 20, and 25 g, in conjunction with ZnO from 10, 20, 30, and 40%. The highest tensile strength is observed in the presence of 15 g of starch and 30% ZnO, exhibiting a value of 4.7770 MPa. The addition of ZnO fillers to degradable plastics results in enhanced mechanical strength, with increased ZnO content leading to greater strength. The mixing process exerts a significant influence on the resulting mechanical properties. Optimal mixing conditions, including appropriate speeds and times, result in a uniform distribution of particles, thereby enhancing the mechanical strength of the material. The specify which organic group present in the compound analysis of degradable plastics are characterised by a high degree of hydrophilicity, which enables them to bind to water. Thermogravimetric analysis indicates that the plastic is capable of withstanding elevated temperatures. A loss of weight is observed between 312.72°C to 344.31°C. It was observed that an improve in the percentage of ZnO used determined in a corresponding increase of water absorption value from degradable plastic. The lowest water absorption value, at 17.59%, was observed when 25 g of starch mass and 10% ZnO were used. The plastic was completely degraded on the19th day, which is substantially shorter than the 180-day biodegradation period specified in ASTM D5338.
References
Abidin, N. D. Z., Azhar, N. S., Sarip, M. N., Hamid, H. A., & Nasir, N. A. H. A. (2021). Production of bioplastic from cassava peel with different concentrations of glycerol and CaCO? as filler. AIP Conference Proceedings, 020004. https://doi.org/10.1063/5.0043482
Aghazadeh, M., Karim, R., Rahman, R. A., Sultan, M. T., Johnson, S. K., & Paykary, M. (2018). Effect of glycerol on the physicochemical properties of cereal starch films. Czech Journal of Food Sciences, 36(5), 403–409. https://doi.org/10.17221/41/2017-CJFS
Armynah, B., Anugrahwidya, R., & Tahir, D. (2022). Composite cassava starch/chitosan/pineapple leaf fiber/ZnO bioplastics with high mechanical properties and faster degradation. International Journal of Biological Macromolecules, 213, 814–823. https://doi.org/10.1016/j.ijbiomac.2022.06.038
Darni, Y., Lesmana, D., Puspita, W. P., Lismeri, L., Utami, H., & Ginting, S. B. (2024). Enhancing mechanical and physical properties of bioplastics: Impact of starch/chitosan mass ratio and corn stem cellulose nanofiber filler. In A. Zakaria et al. (Eds.), Proceedings of the 1st International Conference on Industry Science Technology and Sustainability (IConISTS 2023) (Vol. 235, pp. 315–334). Atlantis Press. https://doi.org/10.2991/978-94-6463-475-4_27
Dewi, R., Sylvia, N., & Riza, M. (2023). Characterization of degradable plastics from sago and breadfruit starch with zinc oxide catalyst and polyvinyl alcohol. Jurnal Kimia Sains dan Aplikasi, 26(11), 427–436. https://doi.org/10.14710/jksa.26.11.427-436
Dewi, R., Sylvia, N., Zulnazri, Z., Fithra, H., Riza, M., Siregar, J. P., Cionita, T., Fitriyana, D. F., & Anis, S. (2024). Optimization of avocado seed starch-based degradable plastic synthesis with PLA blend using response surface methodology. Polymers, 16(16), 2384. https://doi.org/10.3390/polym16162384
Elgharbawy, A. S., El Demerdash, A.-G. M., Sadik, W. A., Kasaby, M. A., Lotfy, A. H., & Osman, A. I. (2024). Synthetic degradable polyvinyl alcohol polymer and its blends with starch and cellulose: A comprehensive overview. Polymers, 16(10), 1356. https://doi.org/10.3390/polym16101356
Enwere, C. F., Okafor, I. S., Adeleke, A. A., Petrus, N., Jakada, K., Olosho, A. I., Ikubanni, P. P., Paramasivam, P., & Ayuba, S. (2024). Production of bioplastic films from wild cocoyam (Caladium bicolor) starch. Results in Engineering, 24, 103132. https://doi.org/10.1016/j.rineng.2024.103132
Fabra, M. J., Martínez-Sanz, M., Gómez-Mascaraque, L. G., Gavara, R., & López-Rubio, A. (2018). Structural and physicochemical characterization of thermoplastic corn starch films containing microalgae. Carbohydrate Polymers, 186, 184–191. https://doi.org/10.1016/j.carbpol.2018.01.039
Folino, A., Karageorgiou, A., Calabrò, P. S., & Komilis, D. (2020). Biodegradation of wasted bioplastics in natural and industrial environments: A review. Sustainability, 12(15), 6030. https://doi.org/10.3390/su12156030
Gamage, A., Thiviya, P., Liyanapathiranage, A., Wasana, M. L. D., Jayakodi, Y., Bandara, A., Manamperi, A., Dassanayake, R. S., Evon, P., Merah, O., & Madhujith, T. (2024). Polysaccharide-based bioplastics: Eco-friendly and sustainable solutions for packaging. Journal of Composites Science, 8(10), 413. https://doi.org/10.3390/jcs8100413
Hendrawati, Liandi, A. R., Ahyar, H., Maladi, I., Azhari, A., & Cornelia, M. (2023). Influence of rice husk cellulose, PVA, and ZnO fillers on cassava biodegradable plastic. Case Studies in Chemical and Environmental Engineering, 8, 100520. https://doi.org/10.1016/j.cscee.2023.100520
Jangong, O. S., Gareso, P. L., Mutmainna, I., & Tahir, D. (2019). Fabrication and characterization of starch/chitosan reinforced polypropylene as biodegradable material. Journal of Physics: Conference Series, 1341(8), 082022. https://doi.org/10.1088/1742-6596/1341/8/082022
Jiménez, R., Sandoval-Flores, G., Alvarado-Reyna, S., Alemán-Castillo, S. E., Santiago-Adame, R., & Velázquez, G. (2022). Extraction of starch from Hass avocado seeds for biofilm preparation. Food Science and Technology, 42, e56820. https://doi.org/10.1590/fst.56820
Kan, M., & Miller, S. A. (2022). Environmental impacts of plastic food packaging. Resources, Conservation and Recycling, 180, 106156. https://doi.org/10.1016/j.resconrec.2022.106156
Krishnamurthy, A., & Amritkumar, P. (2019). Synthesis and characterization of eco-friendly bioplastic from low-cost plant resources. SN Applied Sciences, 1(11), 1432. https://doi.org/10.1007/s42452-019-1460-x
Li, J., Zhang, G., & Zhang, D. (2022). Structural optimization of sorghum straw/ZnO/PVA nanocomposite films. Coatings, 12(8), 1226. https://doi.org/10.3390/coatings12081226
Marichelvam, M. K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bioplastics as alternative packaging materials. Fibers, 7(4), 32. https://doi.org/10.3390/fib7040032
Mohd Zain, A. H., Ab Wahab, M. K., & Ismail, H. (2019). Effect of calcium carbonate on LLDPE/thermoplastic starch blends. Journal of Engineering Science, 15(2), 97–108. https://doi.org/10.21315/jes2019.15.2.7
Muñoz-Gimena, P. F., Oliver-Cuenca, V., Peponi, L., & López, D. (2023). Reinforcements and additives in starch-based composites for food packaging. Polymers, 15(13), 2972. https://doi.org/10.3390/polym15132972
Narancic, T., Cerrone, F., Beagan, N., & O’Connor, K. E. (2020). Recent advances in bioplastics: Application and biodegradation. Polymers, 12(4), 920. https://doi.org/10.3390/polym12040920
Navasingh, R. J. H., Gurunathan, M. K., Nikolova, M. P., & Królczyk, J. B. (2023). Sustainable bioplastics for food packaging from renewable resources. Polymers, 15(18), 3760. https://doi.org/10.3390/polym15183760
Peighambardoust, S. J., Peighambardoust, S. H., Pournasir, N., & Mohammadzadeh Pakdel, P. (2019). Active starch-based films incorporating Ag, ZnO, and CuO nanoparticles. Food Packaging and Shelf Life, 22, 100420. https://doi.org/10.1016/j.fpsl.2019.100420
Phelan, A., Meissner, K., Humphrey, J., & Ross, H. (2022). Plastic pollution and packaging: Corporate commitments and actions. Journal of Cleaner Production, 331, 129827. https://doi.org/10.1016/j.jclepro.2021.129827
Post, W., Kuijpers, L. J., Zijlstra, M., Van der Zee, M., & Molenveld, K. (2021). Effect of mineral fillers on biodegradable polymers. Polymers, 13(3), 394. https://doi.org/10.3390/polym13030394
Praseptiangga, D., Widyaastuti, D., Panatarani, C., & Joni, I. M. (2021). Development of carrageenan/SiO?–ZnO bionanocomposite film. Foods, 10(11), 2776. https://doi.org/10.3390/foods10112776
Sandoval Gordillo, C. A., Ayala Valencia, G., Vargas Zapata, R. A., & Agudelo Henao, A. C. (2014). Physicochemical characterization of arrowroot starch and membranes. International Journal of Food Engineering, 10(4), 727–735. https://doi.org/10.1515/ijfe-2014-0122
Sapei, L., Padmawijaya, K. S., Sijayanti, O., & Wardhana, P. J. (2017). Influence of ZnO on chitosan–banana starch bioplastics. IOP Conference Series: Materials Science and Engineering, 223, 012044. https://doi.org/10.1088/1757-899X/223/1/012044
Sirbu, E.-E., Dinita, A., T?nase, M., Portoac?, A.-I., Bondarev, A., Enascuta, C.-E., & Calin, C. (2024). Influence of plasticizer concentration on starch films. Processes, 12(9), 2021. https://doi.org/10.3390/pr12092021
Song, D., Ma, L.-W., Pang, B., An, R., Nie, J.-H., Guo, Y.-R., & Li, S. (2023). Active bio-based packaging using ZnO. International Journal of Molecular Sciences, 24(2), 1577. https://doi.org/10.3390/ijms24021577
Srihanam, P., Thongsomboon, W., & Baimark, Y. (2023). Mechanical and thermal properties of CaCO?-reinforced bioplastics. Polymers, 15(2), 301. https://doi.org/10.3390/polym15020301
Tian, J., Kong, Y., Qian, S., Zhang, Z., Xia, Y., & Li, Z. (2024). Robust starch films reinforced with nanofibrillated cellulose. Composites Part B: Engineering, 275, 111339. https://doi.org/10.1016/j.compositesb.2024.111339
Vyas, A., Ng, S., Fu, T., & Anum, I. (2025). ZnO-embedded carboxymethyl cellulose bioplastic film from sugarcane bagasse. Polymers, 17(5), 579. https://doi.org/10.3390/polym17050579
Xu, J., Huang, Y., Zhu, S., Abbes, N., Jing, X., & Zhang, L. (2021). Green synthesis of ZnO nanoparticles and applications. Journal of Engineered Fibers and Fabrics, 16, 15589250211046242. https://doi.org/10.1177/15589250211046242

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Array
