Abstract
The idea of degradable plastic has been studied abundantly in the past few decades. The goal is to find a way to replace non-degradable plastic. Cellulose is a promising material for making degradable plastic. This study presents a simple method for preparing degradable plastic using pure cellulose from cocoa pods. Experiments were conducted to study the mechanical strength, heat resistance, water absorption, and biodegradability of cellulose degradable plastics. Cellulose-based degradable plastic exhibits tensile strength that is nearly equivalent to that of the pure polymer poly lactic acid (PLA). Infrared spectroscopy (FTIR) analysis of the degradable plastic reveals the presence of O-H (hydroxyl group), CH2 (alkane group), C=C (alkene group), and C-O (carboxylic acid group) bonds, indicative of a diverse molecular structure. Furthermore, the material exhibits significant thermal stability and thermal conductivity, suggesting its applicability in thermal-responsive applications. In the process of making bioplastics, the use of less PLA and more cellulose has been shown to make the material soak up water more quickly. These changes have made the material more waterproof. The degradable plastic decomposed quite well, breaking down completely within 68 days, indicating that cellulose from cocoa pods can be used to make degradable plastics.
References
Abe, M. M., Martins, J. R., Sanvezzo, P. B., Macedo, J. V., Branciforti, M. C., Halley, P., Botaro, V. R., & Brienzo, M. (2021). Advantages and disadvantages of bioplastics production from starch and lignocellulosic components. Polymers, 13(15), 2484. https://doi.org/10.3390/polym13152484
Anoraga, S. B., Shamsudin, R., Hamzah, M. H., Sharif, S., & Saputro, A. D. (2024). Cocoa by-products: A comprehensive review on potential uses, waste management, and emerging green technologies for cocoa pod husk utilization. Heliyon, 10(16), e35537. https://doi.org/10.1016/j.heliyon.2024.e35537
Brunšek, R., Kopitar, D., Schwarz, I., & Marasovi?, P. (2023). Biodegradation properties of cellulose fibers and pla biopolymer. Polymers, 15(17), 3532. https://doi.org/10.3390/polym15173532
Baidurah, S. (2022). Methods of analyses for biodegradable polymers: A review. Polymers, 14(22), 4928. https://doi.org/10.3390/polym14224928
Bariši?, V., Jozinovi?, A., Flanjak, I., Šubari?, D., Babi?, J., Mili?evi?, B., Doko, K., & A?kar, ?. (2020). Difficulties with use of cocoa bean shell in food production and high voltage electrical discharge as a possible solution. Sustainability, 12(10), 3981. https://doi.org/10.3390/su12103981
Campos-Vega, R., Nieto-Figueroa, K. H., & Oomah, B. D. (2018). Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds. Trends in Food Science & Technology, 81, 172–184. https://doi.org/10.1016/j.tifs.2018.09.022
Chu, H., Chen, Z., Chen, Y., Wei, D., Liu, Y., & Zhao, H. (2024). Mechanical properties and crystallinity of specific pla/cellulose composites by surface modification of nanofibrillated cellulose. Polymers, 16(17), 2474. https://doi.org/10.3390/polym16172474
Coppola, G., Gaudio, M. T., Lopresto, C. G., Calabro, V., Curcio, S., & Chakraborty, S. (2021). Bioplastic from renewable biomass: A facile solution for a greener environment. Earth Systems and Environment, 5(2), 231–251. https://doi.org/10.1007/s41748-021-00208-7
Czechowski, L., Kedziora, S., Museyibov, E., Schlienz, M., Szatkowski, P., Szatkowska, M., & Gralewski, J. (2022). Influence of uv ageing on properties of printed pla containing graphene nanopowder. Materials, 15(22), 8135. https://doi.org/10.3390/ma15228135
Darmenbayeva, A., Zhussipnazarova, G., Rajasekharan, R., Massalimova, B., Zharlykapova, R., Nurlybayeva, A., Mukazhanova, Z., Aubakirova, G., Begenova, B., Manapova, S., Bulekbayeva, K., & Shinibekova, A. (2024). Applications and advantages of cellulose–chitosan biocomposites: Sustainable alternatives for reducing plastic dependency. Polymers, 17(1), 23. https://doi.org/10.3390/polym17010023
Dewi, R., Sylvia, N., Zulnazri, Z., Riza, M., Siregar, J. P., Cionita, T., Kusuma, B. S. (2024). Characterization of sago starch-based degradable plastic with agricultural waste cellulose fiber as filler. Environmental Science. 11(2), 304-323. 10.3934/environsci.2024014.
Dewi, R., Sylvia, N., Zulnazri, Z., Riza, M., Siregar, J. P., Cionita, T. (2024). Use calcium silicate filler to improve the properties of sago starch based degradable plastic. Environmental Science. 12(1), 1-15. 10.3934/environsci.2025001.
Dewi, R., Sylvia, N., Zulnazri, Z., Fithra, H., Riza, M., Siregar, J. P., Cionita, T., Fitriyana, D. F., & Anis, S. (2024). The optimization of avocado-seed-starch-based degradable plastic synthesis with a polylactic acid (PLA) blend using response surface methodology (RSM). Polymers, 16(16), 2384. https://doi.org/10.3390/polym16162384
Elgharbawy, A. S., El Demerdash, A.-G. M., Sadik, W. A., Kasaby, M. A., Lotfy, A. H., & Osman, A. I. (2024). Synthetic degradable polyvinyl alcohol polymer and its blends with starch and cellulose—A comprehensive overview. Polymers, 16(10), 1356. https://doi.org/10.3390/polym16101356
Farshbaf Taghinezhad, S., Mansourieh, M., Abbasi, A., Major, I., & Pezzoli, R. (2025). Improved compatibilized TPS/PLA blends: Effects of singular and binary compatibilization systems. Carbohydrate Polymer Technologies and Applications, 10, 100819. https://doi.org/10.1016/j.carpta.2025.100819
Gbadeyan, O. J., Linganiso, L. Z., & Deenadayalu, N. (2023). Assessment and optimization of thermal stability and water absorption of loading snail shell nanoparticles and sugarcane bagasse cellulose fibers on polylactic acid bioplastic films. Polymers, 15(6), 1557. https://doi.org/10.3390/polym15061557
Hussain, M., Khan, S. M., Shafiq, M., & Abbas, N. (2024). A review on PLA-based biodegradable materials for biomedical applications. Giant, 18, 100261. https://doi.org/10.1016/j.giant.2024.100261
Hendrawati, Liandi, A. R., Ahyar, H., Maladi, I., Azhari, A., & Cornelia, M. (2023). The influence of the filler addition of rice husk cellulose, polyvinyl alcohol, and zinc oxide on the characteristics of environmentally friendly cassava biodegradable plastic. Case Studies in Chemical and Environmental Engineering, 8, 100520. https://doi.org/10.1016/j.cscee.2023.100520
Kubík, ?., & Zeman, S. (2014). Mechanical properties of polyethylene foils. Journal of Central European Agriculture, 15(1), 138–145. https://doi.org/10.5513/JCEA01/15.1.1425
Khotsaeng, N., Simchuer, W., Imsombut, T., & Srihanam, P. (2023). Effect of glycerol concentrations on the characteristics of cellulose films from cattail (Typha angustifolia L.) flowers. Polymers, 15(23), 4535. https://doi.org/10.3390/polym15234535
Lafia-Araga, R. A., Sabo, R., Nabinejad, O., Matuana, L., & Stark, N. (2021). Influence of lactic acid surface modification of cellulose nanofibrils on the properties of cellulose nanofibril films and cellulose nanofibril–poly(Lactic acid) composites. Biomolecules, 11(9), 1346. https://doi.org/10.3390/biom11091346
Marichelvam, M. K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers, 7(4), 32. https://doi.org/10.3390/fib7040032
Martin-Gamboa, M., Allegue, L. D., Puyol, D., Melero, J. A., & Dufour, J. (2023). Environmental life cycle assessment of polyhydroxyalkanoates production by purple phototrophic bacteria mixed cultures. Journal of Cleaner Production, 428, 139421. https://doi.org/10.1016/j.jclepro.2023.139421
Mohammed, A. A. B. A., Hasan, Z., Omran, A. A. B., Elfaghi, A. M., Khattak, M. A., Ilyas, R. A., & Sapuan, S. M. (2022). Effect of various plasticizers in different concentrations on physical, thermal, mechanical, and structural properties of wheat starch-based films. Polymers, 15(1), 63. https://doi.org/10.3390/polym15010063
Mahmoud, Y., Belhanche-Bensemra, N., & Safidine, Z. (2022). Impact of microcrystalline cellulose extracted from walnut and apricots shells on the biodegradability of Poly (Lactic acid). Frontiers in Materials, 9, 1005387. https://doi.org/10.3389/fmats.2022.1005387
Naser, A. Z., Deiab, I., & Darras, B. M. (2021). Poly(Lactic acid) (Pla) and polyhydroxyalkanoates (Phas), green alternatives to petroleum-based plastics: A review. RSC Advances, 11(28), 17151–17196. https://doi.org/10.1039/D1RA02390J
Navasingh, R. J. H., Gurunathan, M. K., Nikolova, M. P., & Królczyk, J. B. (2023). Sustainable bioplastics for food packaging produced from renewable natural sources. Polymers, 15(18), 3760. https://doi.org/10.3390/polym15183760
Nigam, S., Das, A. K., Matkawala, F., & Patidar, M. K. (2022). An insight overview of bioplastics produced from cellulose extracted from plant material, its applications and degradation. Environmental Sustainability, 5(4), 423–441. https://doi.org/10.1007/s42398-022-00248-3
O’Loughlin, J., Doherty, D., Herward, B., McGleenan, C., Mahmud, M., Bhagabati, P., Boland, A. N., Freeland, B., Rochfort, K. D., Kelleher, S. M., Fahy, S., & Gaughran, J. (2023). The potential of bio-based polylactic acid (Pla) as an alternative in reusable food containers: A review. Sustainability, 15(21), 15312. https://doi.org/10.3390/su152115312
Putranti, L. N., & Nugraheni, P. S. (2023). Effect of carboxymethyl cellulose addition on the characteristic of chitosan-based bioplastic. IOP Conference Series: Earth and Environmental Science, 1289(1), 012038. https://doi.org/10.1088/1755-1315/1289/1/012038
Razali, N. A. M., Mohd Sohaimi, R., Othman, R. N. I. R., Abdullah, N., Demon, S. Z. N., Jasmani, L., Yunus, W. M. Z. W., Ya’acob, W. M. H. W., Salleh, E. M., Norizan, M. N., & Halim, N. A. (2022). Comparative study on extraction of cellulose fiber from rice straw waste from chemo-mechanical and pulping method. Polymers, 14(3), 387. https://doi.org/10.3390/polym14030387
Singh, A. A., Genovese, M. E., Mancini, G., Marini, L., & Athanassiou, A. (2020). Green processing route for polylactic acid–cellulose fiber biocomposites. ACS Sustainable Chemistry & Engineering, 8(10), 4128–4136. https://doi.org/10.1021/acssuschemeng.9b06760
Sánchez, M., Laca, A., Laca, A., & Díaz, M. (2023). Cocoa bean shell: A by-product with high potential for nutritional and biotechnological applications. Antioxidants, 12(5), 1028. https://doi.org/10.3390/antiox12051028
Sanyang, M., Sapuan, S., Jawaid, M., Ishak, M., & Sahari, J. (2015). Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers, 7(6), 1106–1124. https://doi.org/10.3390/polym7061106
Shafqat, A., Al-Zaqri, N., Tahir, A., & Alsalme, A. (2021). Synthesis and characterization of starch based bioplatics using varying plant-based ingredients, plasticizers and natural fillers. Saudi Journal of Biological Sciences, 28(3), 1739–1749. https://doi.org/10.1016/j.sjbs.2020.12.015
Shamloo, A., Fathi, B., Elkoun, S., Rodrigue, D., & Soldera, A. (2018). Impact of compression molding conditions on the thermal and mechanical properties of polyethylene. Journal of Applied Polymer Science, 135(15), 46176. https://doi.org/10.1002/app.46176
Steven, S., Fauza, A. N., Mardiyati, Y., Santosa, S. P., & Shoimah, S. M. (2022). Facile preparation of cellulose bioplastic from cladophora sp. Algae via hydrogel method. Polymers, 14(21), 4699. https://doi.org/10.3390/polym14214699
Tian, J., Kong, Y., Qian, S., Zhang, Z., Xia, Y., & Li, Z. (2024). Mechanically robust multifunctional starch films reinforced by surface-tailored nanofibrillated cellulose. Composites Part B: Engineering, 275, 111339. https://doi.org/10.1016/j.compositesb.2024.111339
Tušek, K., Valinger, D., Jurina, T., Soka? Cvetni?, T., Gajdoš Kljusuri?, J., & Benkovi?, M. (2024). Bioactives in cocoa: Novel findings, health benefits, and extraction techniques. Separations, 11(4), 128. https://doi.org/10.3390/separations11040128
Wang, Q., Ji, C., Sun, L., Sun, J., & Liu, J. (2020). Cellulose nanofibrils filled poly(Lactic acid) biocomposite filament for fdm 3d printing. Molecules, 25(10), 2319. https://doi.org/10.3390/molecules25102319
Yang, Z., Li, X., Si, J., Cui, Z., & Peng, K. (2019). Morphological, mechanical and thermal properties of poly(Lactic acid) (Pla)/cellulose nanofibrils (Cnf) composites nanofiber for tissue engineering. Journal of Wuhan University of Technology-Mater. Sci. Ed., 34(1), 207–215. https://doi.org/10.1007/s11595-019-2037-7
Zainal, S. H., Mohd, N. H., Suhaili, N., Anuar, F. H., Lazim, A. M., & Othaman, R. (2021). Preparation of cellulose-based hydrogel: A review. Journal of Materials Research and Technology, 10, 935–952. https://doi.org/10.1016/j.jmrt.2020.12.012
Zhang, B., Yang, X., Liu, L., Chen, L., Teng, J., Zhu, X., Zhao, J., & Wang, Q. (2021). Spatial and seasonal variations in biofilm formation on microplastics in coastal waters. Science of The Total Environment, 770, 145303. https://doi.org/10.1016/j.scitotenv.2021.145303
Zuo, Y., Gu, J., Yang, L., Qiao, Z., Tan, H., & Zhang, Y. (2014). Preparation and characterization of dry method esterified starch/polylactic acid composite materials. International Journal of Biological Macromolecules, 64, 174–180. https://doi.org/10.1016/j.ijbiomac.2013.11.026

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Array