SYNTHESIS AND PERFORMANCE OF DEGRADABLE CELLULOSE-BASED PLASTICS FROM COCOA PODS (THEOBROMA COCOA. L) WITH POLYLACTIC ACID BLENDS

Supplementary Files

PDF

Keywords

degradable plastic
cocoa pods cellulose
mechanical strength
heat resistance
biodegradability

How to Cite

Dewi, R., Ananda, A., Sylvia, N., Riza, M., Cionita, T., Parlaungan Siregar, J., & Santri Kusuma, B. (2025). SYNTHESIS AND PERFORMANCE OF DEGRADABLE CELLULOSE-BASED PLASTICS FROM COCOA PODS (THEOBROMA COCOA. L) WITH POLYLACTIC ACID BLENDS. Journal of Engineering & Technological Advances , 10(1), 131-150. https://doi.org/10.35934/segi.v10i1.137

Abstract

The idea of degradable plastic has been studied abundantly in the past few decades. The goal is to find a way to replace non-degradable plastic. Cellulose is a promising material for making degradable plastic. This study presents a simple method for preparing degradable plastic using pure cellulose from cocoa pods. Experiments were conducted to study the mechanical strength, heat resistance, water absorption, and biodegradability of cellulose degradable plastics. Cellulose-based degradable plastic exhibits tensile strength that is nearly equivalent to that of the pure polymer poly lactic acid (PLA). Infrared spectroscopy (FTIR) analysis of the degradable plastic reveals the presence of O-H (hydroxyl group), CH2 (alkane group), C=C (alkene group), and C-O (carboxylic acid group) bonds, indicative of a diverse molecular structure. Furthermore, the material exhibits significant thermal stability and thermal conductivity, suggesting its applicability in thermal-responsive applications. In the process of making bioplastics, the use of less PLA and more cellulose has been shown to make the material soak up water more quickly. These changes have made the material more waterproof. The degradable plastic decomposed quite well, breaking down completely within 68 days, indicating that cellulose from cocoa pods can be used to make degradable plastics.

https://doi.org/10.35934/segi.v10i1.137

References

Abe, M. M., Martins, J. R., Sanvezzo, P. B., Macedo, J. V., Branciforti, M. C., Halley, P., Botaro, V. R., & Brienzo, M. (2021). Advantages and disadvantages of bioplastics production from starch and lignocellulosic components. Polymers, 13(15), 2484. https://doi.org/10.3390/polym13152484

Anoraga, S. B., Shamsudin, R., Hamzah, M. H., Sharif, S., & Saputro, A. D. (2024). Cocoa by-products: A comprehensive review on potential uses, waste management, and emerging green technologies for cocoa pod husk utilization. Heliyon, 10(16), e35537. https://doi.org/10.1016/j.heliyon.2024.e35537

Brunšek, R., Kopitar, D., Schwarz, I., & Marasovi?, P. (2023). Biodegradation properties of cellulose fibers and pla biopolymer. Polymers, 15(17), 3532. https://doi.org/10.3390/polym15173532

Baidurah, S. (2022). Methods of analyses for biodegradable polymers: A review. Polymers, 14(22), 4928. https://doi.org/10.3390/polym14224928

Bariši?, V., Jozinovi?, A., Flanjak, I., Šubari?, D., Babi?, J., Mili?evi?, B., Doko, K., & A?kar, ?. (2020). Difficulties with use of cocoa bean shell in food production and high voltage electrical discharge as a possible solution. Sustainability, 12(10), 3981. https://doi.org/10.3390/su12103981

Campos-Vega, R., Nieto-Figueroa, K. H., & Oomah, B. D. (2018). Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds. Trends in Food Science & Technology, 81, 172–184. https://doi.org/10.1016/j.tifs.2018.09.022

Chu, H., Chen, Z., Chen, Y., Wei, D., Liu, Y., & Zhao, H. (2024). Mechanical properties and crystallinity of specific pla/cellulose composites by surface modification of nanofibrillated cellulose. Polymers, 16(17), 2474. https://doi.org/10.3390/polym16172474

Coppola, G., Gaudio, M. T., Lopresto, C. G., Calabro, V., Curcio, S., & Chakraborty, S. (2021). Bioplastic from renewable biomass: A facile solution for a greener environment. Earth Systems and Environment, 5(2), 231–251. https://doi.org/10.1007/s41748-021-00208-7

Czechowski, L., Kedziora, S., Museyibov, E., Schlienz, M., Szatkowski, P., Szatkowska, M., & Gralewski, J. (2022). Influence of uv ageing on properties of printed pla containing graphene nanopowder. Materials, 15(22), 8135. https://doi.org/10.3390/ma15228135

Darmenbayeva, A., Zhussipnazarova, G., Rajasekharan, R., Massalimova, B., Zharlykapova, R., Nurlybayeva, A., Mukazhanova, Z., Aubakirova, G., Begenova, B., Manapova, S., Bulekbayeva, K., & Shinibekova, A. (2024). Applications and advantages of cellulose–chitosan biocomposites: Sustainable alternatives for reducing plastic dependency. Polymers, 17(1), 23. https://doi.org/10.3390/polym17010023

Dewi, R., Sylvia, N., Zulnazri, Z., Riza, M., Siregar, J. P., Cionita, T., Kusuma, B. S. (2024). Characterization of sago starch-based degradable plastic with agricultural waste cellulose fiber as filler. Environmental Science. 11(2), 304-323. 10.3934/environsci.2024014.

Dewi, R., Sylvia, N., Zulnazri, Z., Riza, M., Siregar, J. P., Cionita, T. (2024). Use calcium silicate filler to improve the properties of sago starch based degradable plastic. Environmental Science. 12(1), 1-15. 10.3934/environsci.2025001.

Dewi, R., Sylvia, N., Zulnazri, Z., Fithra, H., Riza, M., Siregar, J. P., Cionita, T., Fitriyana, D. F., & Anis, S. (2024). The optimization of avocado-seed-starch-based degradable plastic synthesis with a polylactic acid (PLA) blend using response surface methodology (RSM). Polymers, 16(16), 2384. https://doi.org/10.3390/polym16162384

Elgharbawy, A. S., El Demerdash, A.-G. M., Sadik, W. A., Kasaby, M. A., Lotfy, A. H., & Osman, A. I. (2024). Synthetic degradable polyvinyl alcohol polymer and its blends with starch and cellulose—A comprehensive overview. Polymers, 16(10), 1356. https://doi.org/10.3390/polym16101356

Farshbaf Taghinezhad, S., Mansourieh, M., Abbasi, A., Major, I., & Pezzoli, R. (2025). Improved compatibilized TPS/PLA blends: Effects of singular and binary compatibilization systems. Carbohydrate Polymer Technologies and Applications, 10, 100819. https://doi.org/10.1016/j.carpta.2025.100819

Gbadeyan, O. J., Linganiso, L. Z., & Deenadayalu, N. (2023). Assessment and optimization of thermal stability and water absorption of loading snail shell nanoparticles and sugarcane bagasse cellulose fibers on polylactic acid bioplastic films. Polymers, 15(6), 1557. https://doi.org/10.3390/polym15061557

Hussain, M., Khan, S. M., Shafiq, M., & Abbas, N. (2024). A review on PLA-based biodegradable materials for biomedical applications. Giant, 18, 100261. https://doi.org/10.1016/j.giant.2024.100261

Hendrawati, Liandi, A. R., Ahyar, H., Maladi, I., Azhari, A., & Cornelia, M. (2023). The influence of the filler addition of rice husk cellulose, polyvinyl alcohol, and zinc oxide on the characteristics of environmentally friendly cassava biodegradable plastic. Case Studies in Chemical and Environmental Engineering, 8, 100520. https://doi.org/10.1016/j.cscee.2023.100520

Kubík, ?., & Zeman, S. (2014). Mechanical properties of polyethylene foils. Journal of Central European Agriculture, 15(1), 138–145. https://doi.org/10.5513/JCEA01/15.1.1425

Khotsaeng, N., Simchuer, W., Imsombut, T., & Srihanam, P. (2023). Effect of glycerol concentrations on the characteristics of cellulose films from cattail (Typha angustifolia L.) flowers. Polymers, 15(23), 4535. https://doi.org/10.3390/polym15234535

Lafia-Araga, R. A., Sabo, R., Nabinejad, O., Matuana, L., & Stark, N. (2021). Influence of lactic acid surface modification of cellulose nanofibrils on the properties of cellulose nanofibril films and cellulose nanofibril–poly(Lactic acid) composites. Biomolecules, 11(9), 1346. https://doi.org/10.3390/biom11091346

Marichelvam, M. K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers, 7(4), 32. https://doi.org/10.3390/fib7040032

Martin-Gamboa, M., Allegue, L. D., Puyol, D., Melero, J. A., & Dufour, J. (2023). Environmental life cycle assessment of polyhydroxyalkanoates production by purple phototrophic bacteria mixed cultures. Journal of Cleaner Production, 428, 139421. https://doi.org/10.1016/j.jclepro.2023.139421

Mohammed, A. A. B. A., Hasan, Z., Omran, A. A. B., Elfaghi, A. M., Khattak, M. A., Ilyas, R. A., & Sapuan, S. M. (2022). Effect of various plasticizers in different concentrations on physical, thermal, mechanical, and structural properties of wheat starch-based films. Polymers, 15(1), 63. https://doi.org/10.3390/polym15010063

Mahmoud, Y., Belhanche-Bensemra, N., & Safidine, Z. (2022). Impact of microcrystalline cellulose extracted from walnut and apricots shells on the biodegradability of Poly (Lactic acid). Frontiers in Materials, 9, 1005387. https://doi.org/10.3389/fmats.2022.1005387

Naser, A. Z., Deiab, I., & Darras, B. M. (2021). Poly(Lactic acid) (Pla) and polyhydroxyalkanoates (Phas), green alternatives to petroleum-based plastics: A review. RSC Advances, 11(28), 17151–17196. https://doi.org/10.1039/D1RA02390J

Navasingh, R. J. H., Gurunathan, M. K., Nikolova, M. P., & Królczyk, J. B. (2023). Sustainable bioplastics for food packaging produced from renewable natural sources. Polymers, 15(18), 3760. https://doi.org/10.3390/polym15183760

Nigam, S., Das, A. K., Matkawala, F., & Patidar, M. K. (2022). An insight overview of bioplastics produced from cellulose extracted from plant material, its applications and degradation. Environmental Sustainability, 5(4), 423–441. https://doi.org/10.1007/s42398-022-00248-3

O’Loughlin, J., Doherty, D., Herward, B., McGleenan, C., Mahmud, M., Bhagabati, P., Boland, A. N., Freeland, B., Rochfort, K. D., Kelleher, S. M., Fahy, S., & Gaughran, J. (2023). The potential of bio-based polylactic acid (Pla) as an alternative in reusable food containers: A review. Sustainability, 15(21), 15312. https://doi.org/10.3390/su152115312

Putranti, L. N., & Nugraheni, P. S. (2023). Effect of carboxymethyl cellulose addition on the characteristic of chitosan-based bioplastic. IOP Conference Series: Earth and Environmental Science, 1289(1), 012038. https://doi.org/10.1088/1755-1315/1289/1/012038

Razali, N. A. M., Mohd Sohaimi, R., Othman, R. N. I. R., Abdullah, N., Demon, S. Z. N., Jasmani, L., Yunus, W. M. Z. W., Ya’acob, W. M. H. W., Salleh, E. M., Norizan, M. N., & Halim, N. A. (2022). Comparative study on extraction of cellulose fiber from rice straw waste from chemo-mechanical and pulping method. Polymers, 14(3), 387. https://doi.org/10.3390/polym14030387

Singh, A. A., Genovese, M. E., Mancini, G., Marini, L., & Athanassiou, A. (2020). Green processing route for polylactic acid–cellulose fiber biocomposites. ACS Sustainable Chemistry & Engineering, 8(10), 4128–4136. https://doi.org/10.1021/acssuschemeng.9b06760

Sánchez, M., Laca, A., Laca, A., & Díaz, M. (2023). Cocoa bean shell: A by-product with high potential for nutritional and biotechnological applications. Antioxidants, 12(5), 1028. https://doi.org/10.3390/antiox12051028

Sanyang, M., Sapuan, S., Jawaid, M., Ishak, M., & Sahari, J. (2015). Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers, 7(6), 1106–1124. https://doi.org/10.3390/polym7061106

Shafqat, A., Al-Zaqri, N., Tahir, A., & Alsalme, A. (2021). Synthesis and characterization of starch based bioplatics using varying plant-based ingredients, plasticizers and natural fillers. Saudi Journal of Biological Sciences, 28(3), 1739–1749. https://doi.org/10.1016/j.sjbs.2020.12.015

Shamloo, A., Fathi, B., Elkoun, S., Rodrigue, D., & Soldera, A. (2018). Impact of compression molding conditions on the thermal and mechanical properties of polyethylene. Journal of Applied Polymer Science, 135(15), 46176. https://doi.org/10.1002/app.46176

Steven, S., Fauza, A. N., Mardiyati, Y., Santosa, S. P., & Shoimah, S. M. (2022). Facile preparation of cellulose bioplastic from cladophora sp. Algae via hydrogel method. Polymers, 14(21), 4699. https://doi.org/10.3390/polym14214699

Tian, J., Kong, Y., Qian, S., Zhang, Z., Xia, Y., & Li, Z. (2024). Mechanically robust multifunctional starch films reinforced by surface-tailored nanofibrillated cellulose. Composites Part B: Engineering, 275, 111339. https://doi.org/10.1016/j.compositesb.2024.111339

Tušek, K., Valinger, D., Jurina, T., Soka? Cvetni?, T., Gajdoš Kljusuri?, J., & Benkovi?, M. (2024). Bioactives in cocoa: Novel findings, health benefits, and extraction techniques. Separations, 11(4), 128. https://doi.org/10.3390/separations11040128

Wang, Q., Ji, C., Sun, L., Sun, J., & Liu, J. (2020). Cellulose nanofibrils filled poly(Lactic acid) biocomposite filament for fdm 3d printing. Molecules, 25(10), 2319. https://doi.org/10.3390/molecules25102319

Yang, Z., Li, X., Si, J., Cui, Z., & Peng, K. (2019). Morphological, mechanical and thermal properties of poly(Lactic acid) (Pla)/cellulose nanofibrils (Cnf) composites nanofiber for tissue engineering. Journal of Wuhan University of Technology-Mater. Sci. Ed., 34(1), 207–215. https://doi.org/10.1007/s11595-019-2037-7

Zainal, S. H., Mohd, N. H., Suhaili, N., Anuar, F. H., Lazim, A. M., & Othaman, R. (2021). Preparation of cellulose-based hydrogel: A review. Journal of Materials Research and Technology, 10, 935–952. https://doi.org/10.1016/j.jmrt.2020.12.012

Zhang, B., Yang, X., Liu, L., Chen, L., Teng, J., Zhu, X., Zhao, J., & Wang, Q. (2021). Spatial and seasonal variations in biofilm formation on microplastics in coastal waters. Science of The Total Environment, 770, 145303. https://doi.org/10.1016/j.scitotenv.2021.145303

Zuo, Y., Gu, J., Yang, L., Qiao, Z., Tan, H., & Zhang, Y. (2014). Preparation and characterization of dry method esterified starch/polylactic acid composite materials. International Journal of Biological Macromolecules, 64, 174–180. https://doi.org/10.1016/j.ijbiomac.2013.11.026

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Array