FEASIBILITY OF RECYCLING SILICOMANGANESE SLAG AS A CEMENTITIOUS MATERIAL

Supplementary Files

PDF

Keywords

Construction material
Industrial wastes
Sarawak
Silicomanganese slag
Sustainable

Abstract

The rapid urbanization and industrialization of a country tends to generate large volume of industrial waste in the environment. In this sustainability era, feasibility of recycling industrial waste has gained attention by researchers and industry practitioners. Silicomanganese (SiMn) slag is a common industrial waste produced in the ferro-alloy smelting plant in Sarawak. This paper intends to present a review on the feasibility of recycling SiMn slag into a more sustainable construction material. A desktop study has been conducted to explore the feasibility of SiMn slag on its engineering aspects. Review indicated that SiMn slag is potential to be recycled as an alternative cementitious material. By replacing cement with SiMn slag, it will not only bring the positive impact on the economical aspect but also environmental aspect. This suggestion is critical in responding the call of Sustainable Development Goals (SDGs) of being responsible on the products consumption and production through promoting sustainable use of generated industrial wastes.

https://doi.org/10.35934/segi.v8i1.79

References

Allahverdi, A., & Ahmadnezhad, S. (2014). Mechanical activation of silicomanganese slag and its influence on the properties of Portland slag cement. Powder Technology, 251, pp. 41–51. https://doi.org/10.1016/j.powtec.2013.10.023.

Ayala, J., & Fernández, B. (2015). Recovery of manganese from silicomanganese slag by means of a hydrometallurgical process. Hydrometallurgy, 158, pp. 68–73.

https://doi.org/10.1016/j.hydromet.2015.10.007.

Bengar, H. A., Shahmansouri, A. A., Sabet, N. A. Z., Kabirifar, K., & Tam, V. W. (2020). Impact of elevated temperatures on the structural performance of recycled rubber concrete: Experimental and mathematical modeling. Construction and Building Materials, 255, pp. 119374. https://doi.org/10.1016/j.conbuildmat.2020.119374.

Choi, S., Kim, J., Oh, S., & Han, D. (2017). Hydro-thermal reaction according to the CaO/SiO2 mole-ratio in silico-manganese slag. Journal of Material Cycles and Waste Management, 19, pp. 374–381. https://doi.org/10.1007/s10163-015-0431-6.

Dayak Daily: Japan, South Korea use manganese slag by-product to build roads, but Malaysia calls it waste. (2022). Retrieved from https://dayakdaily.com/japan-korea-use-by-product-manganese-slag-to-build-roads-malaysia-calls-it-waste-travelogue-day-8/

Frías, M., De Rojas, M. I. S., & Rodríguez, C. (2009). The influence of SiMn slag on chemical resistance of blended cement pastes. Construction and Building Materials, 23(3), 1472–1475. https://doi.org/10.1016/j.conbuildmat.2008.06.012.

Frias, M., De Rojas, M. I. S., Santamaría, J., & Rodríguez, C. (2006). Recycling of silicomanganese slag as pozzolanic material in Portland cements: Basic and engineering properties. Cement and Concrete Research, 36(3), 487–491.

https://doi.org/10.1016/j.cemconres.2005.06.014.

Han, J. Y., & Gao, Z. H. (2004). Study on effect of physical activating reactivity for the waste residue from Fe-Mn blast furnace. Ferro-alloys, 3, pp. 13-17.

He, P. Y., Zhang, Y. J., Chen, H., & Liu, L. C. (2019). Development of an eco-efficient CaMoO4/electroconductive geopolymer composite for recycling silicomanganese slag and degradation of dye wastewater. Journal of Cleaner Production, 208, pp. 1476–1487. https://doi.org/10.1016/j.jclepro.2018.10.176.

Kumar, S., García-Triñanes, P., Teixeira-Pinto, A., & Bao, M. (2013). Development of alkali activated cement from mechanically activated silico-manganese (SiMn) slag. Cement and Concrete Composites, 40, pp. 7–13. https://doi.org/10.1016/j.cemconcomp.2013.03.026.

Kumar, S., Dhara, S., Kumar, V., Gupta, A., Prasad, A., Keshari, K., & Mishra, B. (2019). Recent trends in slag management & utilization in the steel industry. Minerals & Metals Review, pp. 94–102.

Kunther, W., Ferreiro, S., & Skibsted, J. (2017). Influence of the Ca/Si ratio on the compressive strength of cementitious calcium-silicate-hydrate binders. Journal of Materials Chemistry A, 5(33), 17401–17412. https://doi.org/10.1039/c7ta06104h.

Liu, Q., Li, J., Lu, Z., Li, X., Jiang, J., Niu, Y., & Xiang, Y. (2022). Silicomanganese slag: Hydration mechanism and leaching behavior of heavy metal ions. Construction and Building Materials, 326, pp. 126857. https://doi.org/10.1016/j.conbuildmat.2022.126857.

Lovato, P. S., Possan, E., Dal Molin, D. C. C., Masuero, Â. B., & Ribeiro, J. L. D. (2012). Modeling of mechanical properties and durability of recycled aggregate concretes. Construction and Building Materials, 26(1), 437–447. https://doi.org/10.1016/j.conbuildmat.2011.06.043.

Marion, A. M., De Lanève, M., & De Grauw, A. (2005). Study of the leaching behaviour of paving concretes: quantification of heavy metal content in leachates issued from tank test using demineralized water. Cement and Concrete Research, 35(5), 951-957. https://doi.org/10.1016/j.cemconres.2004.06.014.

Meddah, M. S., Ismail, M. A., El-Gamal, S., & Fitriani, H. (2018). Performances evaluation of binary concrete designed with silica fume and metakaolin. Construction and Building Materials, 166, pp. 400–412. https://doi.org/10.1016/j.conbuildmat.2018.01.138.

Najamuddin, S. K., Johari, M. A. M., Maslehuddin, M., & Yusuf, M. O. (2019). Synthesis of low temperature cured alkaline activated silicomanganese fume mortar. Construction and Building Materials, 200, pp. 387–397. https://doi.org/10.1016/j.conbuildmat.2018.12.056.

Namvar, M., Mahinroosta, M., & Allahverdi, A. (2021). Highly efficient green synthesis of highly pure microporous nanosilica from silicomanganese slag. Ceramics International, 47(2), 2222-2229. https://doi.org/10.1016/j.ceramint.2020.09.062.

Nath, S. K., & Kumar, S. (2016). Evaluation of the suitability of ground granulated silico-manganese slag in Portland slag cement. Construction and Building Materials, 125, pp. 127–134. https://doi.org/10.1016/j.conbuildmat.2016.08.025.

Navarro, A., Cardellach, E., Mendoza, J. L., Corbella, M., & Domènech, L. M. (2008). Metal mobilization from base-metal smelting slag dumps in Sierra Almagrera (Almería, Spain). Applied Geochemistry, 23(4), 895–913. https://doi.org/10.1016/j.apgeochem.2007.07.012.

OECD/IEA and the World Business Council for Sustainable Development, 2009. Cem Tech., Roadmap.

Patil, A. V., & Pande, A. M. (2011). Behaviour of silico manganese slag manufactured aggregate as material for road and rail track construction. Advanced Materials Research, 255, pp. 3258–3262. https://doi.org/10.4028/www.scientific.net/AMR.255-260.3258.

Péra, J., Ambroise, J., & Chabannet, M. (1999). Properties of blast-furnace slags containing high amounts of manganese. Cement and Concrete Research, 29(2), 171–177. https://doi.org/10.1016/S0008-8846(98)00096-9.

Proctor, D. M., Fehling, K. A., Shay, E. C., Wittenborn, J. L., Green, J. J., Avent, C., Bigham, R.D., Connolly, M., Lee, B., Shepker, T.O., & Zak, M. A. (2000). Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environmental Science & Technology, 34(8), 1576-1582.

Rai, A., Prabakar, J., Raju, C. B., & Morchalle, R. K. (2002). Metallurgical slag as a component in blended cement. Construction and Building Materials, 16(8), 489–494. https://doi.org/10.1016/S0950-0618(02)00046-6.

Taylor, M., Tam, C., & Gielen, D. (2006). Energy efficiency and CO2 emission reduction potentials and policies in the cement industry. IEA, France.

The Star: US$500mil smelting plant gets nod for EIA. Eco-business. (2012). Retrieved from https://www.eco-business.com/news/us500mil-smelting-plant-gets-nod-for-eia/.

Ting, M. Z. Y., Wong, K. S., Rahman, M. E., & Joo, M. S. (2020). Mechanical and durability performance of crine sand and seawater concrete incorporating silicomanganese slag as coarse aggregate. Construction and Building Materials, 254, pp. 119195.

https://doi.org/10.1016/j.conbuildmat.2020.119195

Wang, W., Dai, S., Zhang, T., Li, Z., & Xie, Y. (2021). Effect of isothermal and cooling rate on crystallization and viscosity of silicomanganese waste slag. Ceramics International, 47(10), 13622–13627. https://doi.org/10.1016/j.ceramint.2021.01.221.

Wong, J. (2018). Pertama eyes full capacity in October for smelting plant, The Star Online, Star Media Group Berhad. Retrieved from https://www.thestar.com.my/business/business-news/2018/06/25/pertama-eyes-full-capacity-in-october-for-smelting-plant.

Zhang, X. F., Ni, W., Wu, J. Y., & Zhu, L. P. (2011). Hydration mechanism of a cementitious material prepared with Si-Mn slag. International Journal of Minerals, Metallurgy and Materials, 18(2), 234–239. https://doi.org/10.1007/s12613-011-0428-7.

Zhang, Y. J., He, P. Y., Chen, H., & Liu, L. C. (2018). Green transforming metallurgical residue into alkali-activated silicomanganese slag-based cementitious material as photocatalyst. Materials, 11(9), 1773. https://doi.org/10.3390/ma11091773.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Array