INFLUENCE OF OPERATING CONDITIONS ON THE ULTRAFILTRATION TREATMENT OF BRILLIANT BLUE BATIK DYE

Supplementary Files

PDF

Keywords

Brilliant Blue Batik Dye
Ultrafiltration
Operating Conditions
pH
Pressure

Abstract

The batik industry produces a large amount of wastewater that degrades water quality. Ultrafiltration (UF) is an efficient and low-pressure filtration method for water treatment, particularly for dye wastewater. This study aims to analyze the efficiency of commercial UF polyethersulfone (PES) membranes in the treatment of brilliant blue batik dye. The effect of operating conditions involving operating pressure (2, 3, 4 bar) and pH (3, 6, and 9) of dye solution at 50 mg/L on membrane performance was evaluated via a crossflow filtration system. Higher dye rejection was obtained at close to neutral pH and higher pressure. On the other hand, the fouling propensity was mainly affected by pressure and the membrane experienced a slower flux decline at lower pressure. This is owing to the synergistic interaction between size sieving and electrostatic repulsion. The optimum membrane performance was achieved at pH 6 and 3 bar. Future studies can work on real dye wastewater produced from the batik industry.

https://doi.org/10.35934/segi.v7i2.76

References

Abdi, G., Alizadeh, A., Zinadini, S., & Moradi, G. (2018). Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. Journal of Membrane Science, 552, 326–335.

Ahmad, M. A., Eusoff, M. A., Oladoye, P. O., Adegoke, K. A., & Bello, O. S. (2020). Statistical optimization of Remazol Brilliant Blue R dye adsorption onto activated carbon prepared from pomegranate fruit peel. Chemical Data Collections, 28, 100426.

Chen, Y. M., Kah Chun, H., Chan, M. K., Teow, Y. H., & Aida Isma, M. (2023). Optimization of Antifouling Properties of Mixed Matrix Membrane Synthesized via in-situ Colloidal Precipitation. Journal of Membrane Science and Research. 9, 557323

Echakouri, M., Salama, A., & Henni, A. (2022). Experimental Investigation of the Novel Periodic Feed Pressure Technique in Minimizing Fouling during the Filtration of Oily Water Systems Using Ceramic Membranes. Membranes, 12(9), 868.

Faiza, N., Vin Cent, T., & Munira, M. (2022). Trend Analysis of River Flow In Langat River Basin Using Swat Model. Journal of Engineering & Technological Advances, 7(1). 13 - 22

Faneer, K. A., Rohani, R., Mohammad, A. W., & Ba-Abbad, M. M. (2017). Evaluation of the operating parameters for the separation of xylitol from a mixed sugar solution by using a polyethersulfone nanofiltration membrane. Korean Journal of Chemical Engineering, 34(11), 2944–2957.

Fang, S. Y., Zhang, P., Gong, J. L., Tang, L., Zeng, G. M., Song, B., Cao, W. C., Li, J., & Ye, J. (2020). Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation. Chemical Engineering Journal, 385.

Han, G., Chung, T.-S., Weber, M., & Maletzko, C. (2018). Low-Pressure Nanofiltration Hollow Fiber Membranes for Effective Fractionation of Dyes and Inorganic Salts in Textile Wastewater. Environmental Science & Technology, 52(6), 3676–3684.

Ho, K. C., Raffi, S. M., & Teow, Y. H. (2022). Synthesis of MWCNTs/TiO2 Photocatalytic Nanocomposite Membrane via In-situ Colloidal Precipitation Method for Methyl Orange Removal. International Journal of Nanoelectronics and Materials, 15(3), 207–222.

Kolangare, I. M., Isloor, A. M., Karim, Z. A., Kulal, A., Ismail, A. F., Inamuddin, & Asiri, A. M. (2019). Antibiofouling hollow-fiber membranes for dye rejection by embedding chitosan and silver-loaded chitosan nanoparticles. Environmental Chemistry Letters, 17(1), 581–587.

Lee, C. Z., Kah Chun, H., Chan, M. K., & Teow, Y. H. (2022). Effect of Carbon Nanomaterials Concentration in Nanocomposite Membrane for Methyl Blue Dye Removal. Jurnal Teknologi, 84(6), 19–27.

Mohamad Mazuki, N. I., Teow, Y. H., Ho, K. C., & Mohammad, A. W. (2020). Techno-economic analysis of single disinfection units and integrated disinfection systems for sewage effluent reclamation. Journal of Water Process Engineering, 36. 101398

Mohammad, A. W., Teow, Y. H., Ho, K. C., & Rosnan, N. A. (2018). Recent Developments in Nanofiltration for Food Applications. Nanomaterials for Food Applications, 101–120.

Moradi, G., Zinadini, S., & Rajabi, L. (2020). Development of high flux nanofiltration membrane using para-amino benzoate ferroxane nanoparticle for enhanced antifouling behavior and dye removal. Process Safety and Environmental Protection, 144, 65–78.

Nuzul, Z., Talib, S. N., & Wan Johari, W. L. (2020). Water quality of effluent treatment systems from local batik industries. IOP Conference Series: Earth and Environmental Science, 476(1), 012097.

Rashidi, H. R., Sulaiman, N. M. N., & Hashim, N. A. (2012). Batik Industry Synthetic Wastewater Treatment Using Nanofiltration Membrane. Procedia Engineering, 44, 2010–2012.

Razali, H. M., Ibrahim, M., Omar, M., & Hashim, S. F. M. (2021). Current challenges of the batik industry in Malaysia and proposed solutions. 020269.

Ren, L., Yu, S., Li, J., & Li, L. (2019). Pilot study on the effects of operating parameters on membrane fouling during ultrafiltration of alkali/surfactant/polymer flooding wastewater: optimization and modeling. RSC Advances, 9(20), 11111–11122.

Syafiuddin, A., & Fulazzaky, M. A. (2021). Decolorization kinetics and mass transfer mechanisms of Remazol Brilliant Blue R dye mediated by different fungi. Biotechnology Reports, 29, e00573.

Teow, Y. H., Chiah, Y. H., Ho, K. C., & Mahmoudi, E. (2022). Treatment of semiconductor-industry wastewater with the application of ceramic membrane and polymeric membrane. Journal of Cleaner Production, 337. 130569

Teow, Y. H., Tajudin, S. ‘Aisyah, Ho, K. C., & Mohammad, A. W. (2020). Synthesis and characterization of graphene shell composite from oil palm frond juice for the treatment of dye-containing wastewater. Journal of Water Process Engineering, 35.101185

Wang, X., Ju, X., Jia, T.-Z., Xia, Q.-C., Guo, J.-L., Wang, C., Cui, Z., Wang, Y., Xing, W., & Sun, S.-P. (2018). New surface cross-linking method to fabricate positively charged nanofiltration membranes for dye removal. Journal of Chemical Technology & Biotechnology, 93(8), 2281–2291.

Xing, L., Guo, N., Zhang, Y., Zhang, H., & Liu, J. (2015). A negatively charged loose nanofiltration membrane by blending with poly (sodium 4-styrene sulfonate) grafted SiO2 via SI-ATRP for dye purification. Separation and Purification Technology, 146, 50–59.

Yadak Yaraghi, A. H., Ramezanianpour, A. M., Ramezanianpour, A. A., Bahman-Zadeh, F., & Zolfagharnasab, A. (2022). Evaluation of test procedures for durability and permeability assessment of concretes containing calcined clay. Journal of Building Engineering, 58, 105016.

Ye, W., Lin, J., Borrego, R., Chen, D., Sotto, A., Luis, P., Liu, M., Zhao, S., Tang, C. Y., & van der Bruggen, B. (2018). Advanced desalination of dye/NaCl mixures by a loose nanofiltration membrane for digital ink-jet printing. Separation and Purification Technology, 197, 27–35.

Zhou, L., Xiao, G., He, Y., Wu, J., Shi, H., Zhong, F., Yin, X., Li, Z., & Chen, J. (2021). Multifunctional filtration membrane with anti-viscous-oils-fouling capacity and selective dyes adsorption ability for complex wastewater remediation. Journal of Hazardous Materials, 413, 125379.

Zhu, S., Shi, M., Zhao, S., Wang, Z., Wang, J., & Wang, S. (2015). Preparation and characterization of a polyethersulfone/polyaniline nanocomposite membrane for ultrafiltration and as a substrate for a gas separation membrane. RSC Advances, 5(34), 27211–27223.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Array