A STUDY OF MECHANICAL PROPERTIES OF REINFORCED CONCRETE BEAM USING ARDUINO MICROCONTROLLER

Supplementary Files

PDF

Keywords

Arduino
Open-source
Accelerometer
ADXL345
Free vibration

Abstract

This paper presents the use of an open source-based technology, Arduino microcontroller, which is used for free vibration test by using accelerometer ADXL345 comparing with one of common accelerometer and data-logger. The test was carried out in 3 variations: pre-loading, elastic damage (L/240), and inelastic damage (L/120). This research used reinforced concrete beam as specimens with 3000 mm length, 150 mm width, and 250 mm depth. Specimen was installed by 2 monitoring system, Arduino equipped with accelerometer ADXL345 and commercial data-logger NI equipped with commercial accelerometer KISTLER. The results show that relative error between ADXL345 to KISTLER is less than 5% for mode shape 1, 2, and 3 except in case inelastic damage for mode shape 3 is almost 10%.

https://doi.org/10.35934/segi.v8i1.72

References

Abruzzese, D., Micheletti, A., Tiero, A., Cosentino, M., Forconi, D., Grizzi, G., Scarano, G., Vuth, S., & Abiuso, P. (2020). IoT sensors for modern structural health monitoring. A new frontier. Procedia Structural Integrity, 25, 378–385. https://doi.org/10.1016/J.PROSTR.2020.04.043

Aditama, V., & Wedyantadji, B. (2020). Deteksi Jarak Jauh Keruntuhan Beton Bertulang Berbasis Arduino. Jurnal Sondir, 4(2), 63–69.

Ali, A. S., Zanzinger, Z., Debose, D., & Stephens, B. (2016). Open Source Building Science Sensors (OSBSS): A low-cost Arduino-based platform for long-term indoor environmental data collection. Building and Environment, 100, 114–126. https://doi.org/10.1016/J.BUILDENV.2016.02.010

Allotta, B., Pugi, L., Massai, T., Boni, E., Guidi, F., & Montagni, M. (2017). Design and calibration of an innovative ultrasonic, arduino based anemometer. 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 1–6. https://doi.org/10.1109/EEEIC.2017.7977450

Angelini, E., Corbellini, S., Parvis, M., Ferraris, F., & Grassini, S. (2014). An Arduino-based EIS with a logarithmic amplifier for corrosion monitoring. 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 905–910. https://doi.org/10.1109/I2MTC.2014.6860873

Arduino. (2018). What is Arduino?

Dragos, K., & Smarsly, K. (2017). Decentralized infrastructure health monitoring using embedded computing in wireless sensor networks (pp. 183–201). https://doi.org/10.1007/978-3-319-56136-3_10

Guerriero, L., Guerriero, G., Grelle, G., Guadagno, F. M., & Revellino, P. (2017). Brief Communication: A low-cost Arduino®-based wire extensometer for earth flow monitoring. Natural Hazards and Earth System Sciences, 17(6), 881–885. https://doi.org/10.5194/nhess-17-881-2017

Hasibuzzaman, Md., Shufian, A., Shefa, R. K., Raihan, R., Ghosh, J., & Sarker, A. (2020). Vibration Measurement & Analysis Using Arduino Based Accelerometer. 2020 IEEE Region 10 Symposium (TENSYMP), 508–512. https://doi.org/10.1109/TENSYMP50017.2020.9230668

Hester, D., Brownjohn, J., Bocian, M., & Xu, Y. (2017). Low cost bridge load test: Calculating bridge displacement from acceleration for load assessment calculations. Engineering Structures, 143, 358–374. https://doi.org/10.1016/J.ENGSTRUCT.2017.04.021

Mahbub, M. (2019). Automated control signal reception acknowledgement system using Nrf24l01p wireless transceiver module and arduino. Journal of Applied Science & Process Engineering, 6(1).

Mallari, J. (2020a). How to setup I2C communication on the Arduino?

Mallari, J. (2020b). How to use SPI communication on the Arduino?

Marsh, M. (2021). Future of construction global construction outlook.

Moreu, F., Li, X., Li, S., & Zhang, D. (2018). Technical specifications of structural health monitoring for highway bridges: New Chinese structural health monitoring code. In Frontiers in Built Environment (Vol. 4). Frontiers Media S.A. https://doi.org/10.3389/fbuil.2018.00010

Nguyen, C. D., Huynh, Q. H., Phan, C. B., Tran, V. M., Nguyen, C. M., Pham, B. T., & Ngo, K. N. (2018). Low-cost vibration measurement for behavior of small-scale steel modeling using MEMS, Raspberry Pi-3 and Arduino Mega 2560. https://www.researchgate.net/publication/326032887

Oetomo, J. J. (2020). On the uses of low-cost arduino based microcontroller and adxl 345 accelerometer for geotechnical instrumentation. 24th Annual National Conference on Geotechnical Engineering Jakarta.

Septinurriandiani, P., Penelitian, P., Pengembangan Jalan, D., Jembatan, D., Penelitian, B., & Pengembangan, D. (2011). Sistem monitoring kesehatan struktur-penilaian kondisi dan kriteria peralatan monitoring. www.pusjatan.pu.go.id

Serov, A. (2017). Cognitive Sensor Technology for Structural Health Monitoring. Procedia Structural Integrity, 5, 1160–1167. https://doi.org/10.1016/J.PROSTR.2017.07.027

Silva, A. L., Varanis, M., Mereles, A. G., Oliveira, C., & Balthazar, J. M. (2019). A study of strain and deformation measurement using the Arduino microcontroller and strain gauges devices. Revista Brasileira de Ensino de Fisica, 41(3). https://doi.org/10.1590/1806-9126-RBEF-2018-0206

Thong, Y. K., Woolfson, M. S., Crowe, J. A., Hayes-Gill, B. R., & Jones, D. A. (2004). Numerical double integration of acceleration measurements in noise. Measurement, 36(1), 73–92. https://doi.org/10.1016/J.MEASUREMENT.2004.04.005

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Array