INNOVATIVE DESIGN OF BIODEGRADABLE STENTS: ENHANCING DURABILITY AND COMPATIBILITY TO MITIGATE RESTENOSIS AND THROMBOSIS IN VASCULAR TREATMENTS

Supplementary Files

PDF

Keywords

Stents
Computational Fluid Dynamics (CFD)
Finite Element Analysis (FEA)
Magnesium Alloy
Balloon Expansion Analysis

How to Cite

Shariq, M., & Morad, S. (2025). INNOVATIVE DESIGN OF BIODEGRADABLE STENTS: ENHANCING DURABILITY AND COMPATIBILITY TO MITIGATE RESTENOSIS AND THROMBOSIS IN VASCULAR TREATMENTS. Journal of Engineering & Technological Advances , 10(2), 162-183. https://doi.org/10.35934/segi.v10i2.160

Abstract

Heart diseases are the leading global causes of mortality and morbidity due to obstructed blood vessels. Current clinical practice primarily utilizes stents, but standard models encounter significant limitations, including restenosis, thrombosis, mechanical failure, and issues pertaining to performance and biometric longevity. This research aims to create a novel arterial stent that effectively minimizes vein blockages while enhancing durability and compatibility. with biological environments. The study employs advanced methodologies such as finite element analysis (FEA) and computational fluid dynamics (CFD) simulations to rigorously assess and optimize stent geometry and material characteristics. Key considerations include mechanical stability, decreased restenosis rates, and the potential for controlled degradation using biodegradable materials like magnesium alloys and polymer-metal composites. A magnesium alloy stent model was designed using SolidWorks, followed by three tiers of simulations. After simulating one million cardiac cycles, the stent exhibited fatigue-resilient behaviour in both dynamic linear and nonlinear analyses. The collective results of the simulations affirm that the device achieves high radial strength (~550 N mm?¹), while also offering compliant expansion and effective addressing of the issues surrounding restenosis, thrombosis, and mechanical durability. This innovative approach has the potential to reshape clinical practices, enhance patient outcomes, and establish a benchmark for future stent design research. Future work is suggested to diffuse local stress peaks, alongside outlining a roadmap for transitioning from in vitro and in vivo studies to regulatory approval and subsequent clinical application.

https://doi.org/10.35934/segi.v10i2.160

References

Aikin, M., Shalomeev, V., Kukhar, V., Kostryzhev, A., Kuziev, I., Kulynych, V., et al. (2024). Recent advances in biodegradable magnesium alloys for medical implants: Evolution, innovations, and clinical translation. Crystals, 15(8), 671. https://doi.org/10.3390/cryst15080671

Amukarimi, S., & Mozafari, M. (2021). Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities. MedComm, 2(2), 123–144. https://doi.org/10.1002/mco2.59

Andreou, I., Stone, P. H., Ikonomidis, I., Alexopoulos, D., & Sabaté, M. (2020). Recurrent atherosclerosis complications as a mechanism for stent failure. Hellenic Journal of Cardiology, 61(1), 9–14. https://doi.org/10.1016/j.hjc.2019.04.007

Antonini, L., Poletti, G., Pennati, G., & Petrini, L. (2023). A review on the use of finite element simulations for structural analyses of coronary stenting: What can we do nowadays and what do we need to move forward? European Journal of Mechanics – A/Solids, 101, 105071. https://doi.org/10.1016/j.euromechsol.2023.105071

Benjamin, E. J., et al. (2019). Heart disease and stroke statistics—2019 update: A report from the American Heart Association. Circulation, 139(10), e56–e528. https://doi.org/10.1161/CIR.0000000000000659

Byrne, R. A., Joner, M., & Kastrati, A. (2015). Stent thrombosis and restenosis: What have we learned and where are we going? European Heart Journal, 36(47), 3320–3331. https://doi.org/10.1093/eurheartj/ehv511

Chen, J., Dong, F., & Liu, S. (2024). Design and mechanical performance evaluation of WE43 magnesium alloy biodegradable stents via finite element analysis. Metals, 14(6), 704. https://doi.org/10.3390/met14060704

Chiastra, C., Mazzi, V., Lodi Rizzini, M., Calò, K., Corti, A., Acquasanta, A., De Nisco, G., Belliggiano, D., Cerrato, E., Gallo, D., & Morbiducci, U. (2022). Coronary artery stenting affects wall shear stress topological skeleton. Journal of Biomechanical Engineering, 144(6), 061002. https://doi.org/10.1115/1.4053503

Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA and their functions in widespread applications: A comprehensive review. Advanced Drug Delivery Reviews, 107, 367–392. https://doi.org/10.1016/j.addr.2016.06.012

Finn, A. V., et al. (2007). Pathological correlates of late drug-eluting stent thrombosis. Circulation, 115(18), 2435–2441. https://doi.org/10.1161/CIRCULATIONAHA.107.693739

Gao, R., Xu, B., Zhang, Y., et al. (2020). Three-year outcomes of the ABSORB China randomized trial: Bioresorbable scaffold versus metallic drug-eluting stent. JACC: Cardiovascular Interventions, 13(9), 1120–1128. https://doi.org/10.1016/j.jcin.2020.02.014

Garg, S., & Serruys, P. W. (2010). Coronary stents: Current status. Journal of the American College of Cardiology, 56(10 Suppl), S1–S42. https://doi.org/10.1016/j.jacc.2010.06.007

Ghafari, C., Brassart, N., Delmotte, P., Brunner, P., Dghoughi, S., & Carlier, S. (2023). Bioresorbable magnesium-based stent: Real-world clinical experience and feasibility of follow-up by coronary computed tomography. Biomedicines, 11(4), 1150. https://doi.org/10.3390/biomedicines11041150

Gierig, M., Gaziano, P., Wiggers, P., & Marino, M. (2024). Post-angioplasty remodeling of coronary arteries investigated via a chemo-mechano-biological in silico model. Journal of Biomechanics, 166, 112058. https://doi.org/10.1016/j.jbiomech.2024.112058

Hermawan, H., Dubé, D., & Mantovani, D. (2010). Degradable metallic biomaterials: Design and development of Fe–Mn alloys for stents. Journal of Biomedical Materials Research Part A, 93(1), 1–11. https://doi.org/10.1002/jbm.a.32224

Iqbal, J., Gunn, J., Serruys, P. W., & Foin, N. (2013). Coronary stent design and clinical outcomes. Future Cardiology, 9(2), 183–202. https://doi.org/10.2217/fca.12.79

Iqbal, J., Onuma, Y., Ormiston, J., Abizaid, A., Waksman, R., & Serruys, P. W. (2014). Bioresorbable scaffolds: Rationale, current status, challenges, and future. European Heart Journal, 35(12), 765–776. https://doi.org/10.1093/eurheartj/eht542

Joner, M., Finn, A. V., Farb, A., et al. (2006). Pathology of drug-eluting stents in humans: Delayed healing and late thrombotic risk. Journal of the American College of Cardiology, 48(1), 193–202. https://doi.org/10.1016/j.jacc.2006.03.042

Kumar, G., Preetam, S., Pandey, A., Birbilis, N., Al-Saadi, S., Pasbakhsh, P., Zheludkevich, M., & Balan, P. (2025). Advances in magnesium-based bioresorbable cardiovascular stents: Surface engineering and clinical prospects. Journal of Magnesium and Alloys, 13(3), 948–981. https://doi.org/10.1016/j.jma.2025.01.025

Lai, C.-W., & Chung, T.-S. (2025). Less is more? Bioresorbable vascular scaffold vs drug-eluting metallic stent: Ten-year follow-up. JACC: Case Reports, 30(11), 103315. https://doi.org/10.1016/j.jaccas.2025.103315

Libby, P. (2021). The changing landscape of atherosclerosis. Nature, 592(7855), 524–533. https://doi.org/10.1038/s41586-021-03392-8

Lüscher, T. F., Steffel, J., Eberli, F. R., Joner, M., & Nakazawa, G. (2007). Drug-eluting stents and coronary thrombosis: Biological mechanisms and clinical implications. Circulation, 115(8), 1051–1058. https://doi.org/10.1161/CIRCULATIONAHA.106.67593

Moravej, M., & Mantovani, D. (2011). Biodegradable metals for cardiovascular stent application: Interests and new opportunities. International Journal of Molecular Sciences, 12(7), 4250–4270. https://doi.org/10.3390/ijms12074250

Morice, M. C., et al. (2002). A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. New England Journal of Medicine, 346(23), 1773–1780. https://doi.org/10.1056/NEJMoa012843

Nicolas, J., Pivato, C. A., Chiarito, M., Beerkens, F., Cao, D., & Mehran, R. (2023). Evolution of drug-eluting coronary stents: A back-and-forth journey from the bench to bedside. Cardiovascular Research, 119(3), 631–646. https://doi.org/10.1093/cvr/cvac105

Ormiston, J. A., & Serruys, P. W. (2009). Bioabsorbable coronary stents. Circulation: Cardiovascular Interventions, 2(3), 255–260. https://doi.org/10.1161/CIRCINTERVENTIONS.109.859173

Palmaz, J. C., Sibbitt, R. R., Tio, F. O., Reuter, S. R., Peters, J. E., & Garcia, F. (1986). Expandable intraluminal vascular graft: A feasibility study. Surgery, 99(2), 199–205.

Shen, Z., Zhao, M., Zhou, X., Yang, H., Liu, J., Guo, H., Zheng, Y., & Yang, J. A. (2019). A numerical corrosion–fatigue model for biodegradable magnesium alloy stents. Acta Biomaterialia, 97, 671–680. https://doi.org/10.1016/j.actbio.2019.08.004

Stefanini, G. G., & Holmes, D. R. (2013). Drug-eluting coronary-artery stents. New England Journal of Medicine, 368(3), 254–265. https://doi.org/10.1056/NEJMra1210816

Stone, G. W., Gao, R., Kimura, T., Kereiakes, D. J., Ellis, S. G., Onuma, Y., et al. (2016). One-year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: A patient-level, pooled meta-analysis. The Lancet, 387(10025), 1277–1289. https://doi.org/10.1016/S0140-6736(15)01039-9

Tamai, H., Igaki, K., Kyo, E., & Uehata, H. (2000). Biodegradable stents for cardiovascular intervention. Circulation Journal, 63(5), 343–347. https://doi.org/10.1253/circj.63.343

Tenekecioglu, E., Farooq, V., Bourantas, C., & Zhang, Y. J. (2017). Clinical outcomes of bioresorbable stents. EuroIntervention, 12(7), 912–923. https://doi.org/10.4244/EIJ-D-16-00508

Tijssen, R. Y. G., Kraak, R. P., Lu, H., Mifek, J. G., Carlyle, W. C., Donohoe, D. J., De Winter, R. J., Koch, K. T., & Wykrzykowska, J. J. (2017). Evaluation of the MiStent sustained sirolimus-eluting biodegradable polymer-coated stent for coronary artery disease. Expert Review of Medical Devices, 14(5), 325–334. https://doi.org/10.1080/17434440.2017.1318057

Waksman, R., Kaya, U., & Torguson, R. (2013). Biodegradable stents: New developments. Journal of the American College of Cardiology, 61(5), 511–520. https://doi.org/10.1016/j.jacc.2012.08.1033

World Health Organization. (2025, May 2). Cardiovascular diseases (CVDs): Key facts. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

Zhang, Y., Ni, X., & Pan, C. (2022). Finite element simulation and optimization of mechanical performance of the magnesium-alloy biliary stent. International Journal for Numerical Methods in Biomedical Engineering, 38(5), e3592. https://doi.org/10.1002/cnm.3592

Zheng, Y. F., Gu, X. N., & Witte, F. (2014). Biodegradable metals. Materials Science and Engineering: R: Reports, 77, 1–34. https://doi.org/10.1016/j.mser.2014.01.001

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Array