Abstract
This study focused on maximizing the removal of color pigments from crude rice bran oil (CRBO) using coconut shell-derived activated carbon (CSAC). The study began by analyzing the physical properties of the CSAC used, including pH, bulk density, moisture content, ash content, and iodine number. The analysis showed a pH of 6.95, bulk density of 0.68 g/mL, moisture content of 4.13%, ash content of 8.75%, and an iodine number of 851.84 mg/g. Response surface methodology (RSM) was applied to guide the decolorization process of the CRBO, using the identified conditions to treat the oil. The design variables included adsorbent dosage, temperature, and contact time, with decolorization efficiency serving as the actual and predicted response variable. With a composite desirability score of 0.929, the optimum predicted percentage for decolorization efficiency was determined to be 65.4% at 0.85% w/v, 50oC, and a contact time of 43 min. Statistical analysis confirmed the significance of the optimization model. Based on the color analysis, it was determined that sample 1, which achieved the highest decolorization efficiency (61.1%), was the most successful decolorization process out of all the runs that have been conducted.
References
Aung, L. L. & Thiravetyan, P. (2014). Decolorization of rice bran oil: Adsorption of pigments on acid-activated kaolin. Universities Research Journal. 7, 327–338.
Butt, F.,Syed, M. A., & Shaik, F. (2020). Palm oil bleaching using activated carbon prepared from neem leaves and waste tea. International Journal of Engineering Research and Technology. 13(4), 620–624. https://doi.org/10.37624/ijert/13.4.2020.620-624
Chen, Y., Chen, W., Huang, B., & Huang, M. (2013). Process optimization of K2C2O4-activated carbon from kenaf core using Box–Behnken design. Chemical Engineering Research & Design. 91(9), 1783–1789. https://doi.org/10.1016/j.cherd.2013.02.024
Chetima, A., Wahabou, A., Zomegni, G., Ntieche R. A., & Bup N, D. (2018). Bleaching of neutral cotton seed oil using organic activated carbon in a batch system: Kinetics and adsorption isotherms. Processes. 6(3), 22. https://doi.org/10.3390/pr6030022
D?browski, A., Podko?cielny, P., Hubicki, Z., & Barczak, M. (2005). Adsorption of phenolic compounds by activated carbon-a critical review. Chemosphere. 58(8), 1049–1070. https://doi.org/10.1016/j.chemosphere.2004.09.067
Damayanti, A., Harianingsih, Ash, Z., Bahlawan, S., Shohib, Q., Dillah, Dinara, Y., Dewi, S., Kristi, S., Prasetyo, R., Dewi, S., Kristi, Y., & Prasetyo, S. (2023). Optimization of rice bran oil bleaching via carotenoid adsorption onto activated carbon using response surface methodology (RSM). Reaktor. 23(2), 53–61. https://doi.org/10.14710/reaktor
Djaeni, M., & Listyadevi, Y. L. (2019). The ultrasound-assisted extraction of rice bran oil with n-hexane as a solvent. Journal of Physics: Conference Series. 1295, 012027. https://doi.org/10.1088/1742-6596/1295/1/012027
Efeovbokhan, V. E., Alagbe, E. E., Odika, B., Babalola, R., Oladimeji, T. E., Abatan, O. G., & Yusuf, E. O. (2019). Preparation and characterization of activated carbon from plantain peel and coconut shell using biological activators. Journal of Physics: Conference Series. 1378, 032035. https://doi.org/ 10.1088/1742-6596/1378/3/032035
El Haddad, M., Slimani, R., Mamouni, R., ElAntri, S., & Lazar, S. (2013). Removal of two textile dyes from aqueous solutions onto calcined bones. Journal of the Association of Arab Universities for Basic and Applied. 14(1), 51–59. https://doi.org/10.1016/j.jaubas.2013.03.002
Engelmann, J. I., Ramos, L. P., Crexi, V. T., & Morais, M. M. (2016). Degumming and neutralization of rice bran oil. Journal of Food Process Engineering. 40(2), e12362. https://doi.org/10.1111/jfpe.12362
Gao, W. & Fatehi, P. (2018). Fly ash based adsorbent for treating bleaching effluent of kraft pulping process. Separation and Purification Technology. 195, 60–69. https://doi.org/10.1016/j.seppur.2017.12.002.
Ghahjaverestani, S. T., Gharachorloo, M., & Ghavami, M. (2022). Application of coconut fiber and shell in the bleaching of soybean oil. Grasas Y Aceites. 73(3), e471. https://doi.org/10.3989/gya.0781211
Guedidi, H., Reinert, L., Soneda, Y., Bellakhal, N., & Duclaux, L. (2017) Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths. Arabian Journal of Chemistry. 10, S3584–S3594. https://doi.org/10.1016/j.arabjc.2014.03.007
Guliyev, N. G., Ibrahimov, H. J., Alekperov, J. A., Amirov, F. A., & Ibrahimova, Z. M. (2018). Investigation of activated carbon obtained from the liquid products of pyrolysis in sunflower oil bleaching process. International Journal of Industrial Chemistry. 9(3), 277–284. https://doi.org/10.1007/s40090-018-0156-1
Ifa, L., Wiyani, L., Nurdjannah, N., Ghalib, A. M. T., Ramadhaniar, S., & Kusuma, H. S. (2021). Analysis of bentonite performance on the quality of refined crude palm oil’s color, free fatty acid and carotene: The effect of bentonite concentration and contact time. Heliyon. 7(6), e07230. https://doi.org/10.1016/j.heliyon.2021.e07230
Ikumapayi, O. M., Akinlabi, E. T., Majumdar, J. D., & Akinlabi, S. A. (2020). applications of coconut shell ash/particles in modern manufacturing: A case study of friction stir processing. Modern Manufacturing Processes. Woodhead Publishing Reviews: Mechanical Engineering Series. 69–95. https://doi.org/10.1016/b978-0-12-819496-6.00004-x
Islam, M. A., Tan, Y. L., Islam, M. A., Romi?, M., Hameed, B. H. (2018). Chitosan–Bleaching Earth Clay Composite as an Efficient Adsorbent for Carbon Dioxide Adsorption: Process Optimization. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 554, 9–15. https://doi.org/10.1016/j.colsurfa.2018.06.021
Jeyakumar, R. P. S. & Chandrasekaran, V. (2014). Preparation and characterization of activated carbons derived from marine green algae Ulva fasciata sp. Asian Journal of Chemistry. 26(9), 2545–2549. https://doi.org/10.14233/ajchem.2014.15723
Liu, R., Shi, L., Zhang, Z., Zhang, T., Lu, M., Chang, M., Jin, Q., & Wang, X. (2019). Effect of refining process on physicochemical parameters, chemical compositions and in vitro antioxidant activities of rice bran oil. LWT. 109, 26–32. https://doi.org/10.1016/j.lwt.2019.03.096
Manjula, S., & Subramanian, R. (2009). Simultaneous degumming, dewaxing and decolorizing crude rice bran oil using nonporous membranes. Separation and Purification Technology. 66(2), 223–228. https://doi.org/10.1016/j.seppur.2009.01.004
Mahmood, T., Ali, R., Naeem, A., Hamayun, M., & Aslam, M. (2017). Potential of used Camellia sinensis leaves as precursor for activated carbon preparation by chemical activation with H3PO4; optimization using response surface methodology. Process Safety and Environmental Protection. 109, 548–563. https://doi.org/10.1016/j.psep.2017.04.024.
Mopoung, S., Moonsri, P., Palas, W., & Khumpai, S. (2015). Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe(III) adsorption from aqueous solution. The Scientific World Journal. 2015, 1–9. https://doi.org/10.1155/2015/415961
Ofulue, E. I. O., Adekola, F. A., & Adimula, V. O. (2020). Preparation of activated carbon from teak leaves for the decolorization of palm oil. Journal of Chemical Society of Nigeria. 45(5), 1–8 https://doi.org/10.46602/jcsn.v45i5.519
Oliver, J. K., Berkelmans, R., & Eakin, C. M. (2018). Coral Bleaching in Space and Time. Ecological Studies. 27–49. https://doi.org/10.1007/978-3-319-75393-5_3
Paisan, S., Chetpattananondh, P., & Chongkhong, S. (2017). Assessment of water degumming and acid degumming of mixed algal oil. Journal of Environmental Chemical Engineering. 5(5), 5115–5123. https://doi.org/10.1016/j.jece.2017.09.045
Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2012). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology. 6(1), 36–60. https://doi.org/10.1007/s11947-012-0867-9
Phannasorn, W., Pharapirom, A., Thiennimitr, P., Guo, H., Ketnawa, S., & Wongpoomchai, R. (2022). Enriched riceberry bran oil exerts chemopreventive properties through anti-inflammation and alteration of gut microbiota in carcinogen-induced liver and colon carcinogenesis in rats. Cancers. 14(18), 4358–4358. https://doi.org/10.3390/cancers14184358
Pohndorf, R. S., Cadaval, T. R. S., & Pinto, L. A. A. (2016). Kinetics and thermodynamics adsorption of carotenoids and chlorophylls in rice bran oil bleaching. Journal of Food Engineering. 185, 9–16. https://doi.org/10.1016/j.jfoodeng.2016.03.028
Punia, S., Kumar, M., Siroha, A. K., & Purewal, S. S. (2021). Rice Bran Oil: Emerging trends in extraction, health benefit, and its industrial application. Rice Science. 28(3), 217–232. https://doi.org/10.1016/j.rsci.2021.04.002
Punsuwan, N., Tangsathitkulchai, C., & Takarada, T. (2015). Low temperature gasification of coconut shell with co2 and koh: effects of temperature, chemical loading, and introduced carbonization step on the properties of syngas and porous carbon product. International Journal of Chemical Engineering. 2015(1), e481615. https://doi.org/10.1155/2015/481615
Rahman, A. N. F., Asfar, M., Suwandi, N., & Amir, M. R. R. (2019). The effect of grain germination to improve rice quality. IOP conference series. Earth and environmental science. 355 (1), 012110–012110. https://doi.org/10.1088/1755-1315/355/1/012110
Raza, S. A., Rashid, A., Qureshi, F. A., Asim, M. F., & William, J. (2009). Analytical investigation of oxidative deterioration of Sunflower Oil stored under different conditions. Biharean Biologist. 3(2), 93–97
Rekha, B., Lokesh, B. R., & Krishna, A. G. G. (2014). Chemistry of color fixation in crude, physically refined and chemically refined rice bran oils upon heating. Journal of the American Oil Chemists’ Society. 91(10), 1665–1676. https://doi.org/10.1007/s11746-014-2520-4
Ren, J. N., Zhang, Y., Fan, G., Wang, M. P., Zhang, L. L., Yang, Z. Y., & Pan, S. Y. (2018). Study on the optimization of the decolorization of orange essential oil. Food Science and Biotechnology. 27(4), 929–938. https://doi.org/10.1007/s10068-018-0354-9
Siragi D. B. M., Desmecht, D., Hima, H., Mamane, O., & Natatou, I. (2021). Optimization of activated carbons prepared from Parinari macrophylla shells. Materials Sciences and Applications. 12(5), 207–222. https://doi:10.4236/msa.2021.125014
Somashekhar, T. M., Naik, P., Nayak, V., Mallikappa, & Rahul, S. (2018). Study of mechanical properties of coconut shell powder and tamarind shell powder reinforced with epoxy composites. IOP Conference Series: Materials Science and Engineering. 376, 012105. https://doi.org/10.1088/1757-899x/376/1/012105
Sun, B., Gao, P., Yu, H., Dong, Z., Yin, J., Zhong, W., HU C., He D., & Wang, X. (2023). Optimization of composite decolorizer efficacy based on decolorization efficiency, toxicity, and nutritional value of rice bran oil. Journal of Oleo Science. 72(8), 755-765. https://DOI: 10.5650/jos.ess23050
Tan, I. A. W., Abdullah, M. O., Lim, L. L. P., & Yeo, T. H. C. (2017). Surface modification and characterization of coconut shell-based activated carbon subjected to acidic and alkaline treatments. Journal of Applied Science & Process Engineering. 4(2), 186–194. https://doi.org/10.33736/jaspe.435.2017
Tong, C. & Bao, J. (2019). 5 - Rice lipids and rice bran oil. Rice (Fourth Edition) Chemistry and Technology. 131–168. https://doi.org/10.1016/b978-0-12-811508-4.00005-8
Worasith, N., Goodman, B. A., Jeyashoke, N., Thiravetyan, P. (2011). Decolorization of Rice Bran Oil Using Modified Kaolin. Journal of the American Oil Chemists’ Society. 88 (12), 2005–2014. https://doi.org/10.1007/s11746-011-1872-2
Zulkania, A., Hanum, G. F., & Sri Rezki, A. (2018). The potential of activated carbon derived from bio-char waste of bio-oil pyrolysis as adsorbent. MATEC Web of Conferences, 154, 01029. https://doi.org/10.1051/matecconf/201815401029

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Array