Abstract
Surfactants are amphiphilic compounds that enable the mixing of immiscible substances like oil and water by reducing interfacial tension. However, their application in Enhanced Oil Recovery (EOR) is limited by issues such as toxicity, poor biodegradability, and dependence on edible oils, which can compromise food security. This study focused on synthesizing a non-ionic surfactant from neem (Azadirachta indica) seed oil—a non-edible, biodegradable alternative. Neem seeds were collected from Bayero University Kano, dried for six weeks, and subjected to proximate and Fourier Transform Infrared Spectroscopy (FTIR) analyses. Proximate analysis revealed 28.76% moisture, 14.44% oil/fat, 16.67% protein, and 5.1% ash. FTIR analysis identified key functional groups such as O-H, C-H, and C?N stretching. Oil extraction was carried out using Soxhlet apparatus with 800 ml of n-hexane at 65°C for 1.2 hours, yielding 23% oil, consistent with literature values. The extracted oil showed an acid value of 1.88 mg KOH/g and a saponification value of 184.8 mg KOH/g, indicating suitability for surfactant synthesis. Further FTIR analysis confirmed the presence of functional groups like C-H, C=O, CH2, CH3, C-O, and -(CH2)-n. A non-ionic surfactant was synthesized by reacting 10 ml of neem oil with 5 g NaOH at 80 °C for 2.5 hours, along with 50 ml of distilled water under continuous stirring. FTIR analysis of the product revealed characteristic O-H, COO?, and C-O functional groups, confirming successful surfactant formation. The findings support neem oil as a viable, sustainable surfactant source for EOR applications.
References
Abdurrahman, M., Kamal, M. S., Ramadhan, R., Daniati, A., Arsad, A., Abdul Rahman, A. F., & Rita, N. (2023). Ecofriendly natural surfactants in the oil and gas industry: A comprehensive review. ACS Omega, 8(44), 41004–41021. https://doi.org/10.1021/acsomega.3c04450.
Afeez, G., Yusuff, A., Agi, A., & Oseh, J. (2022). An overview of natural surfactant application for enhanced oil recovery. In Enhanced Oil Recovery Selected Topics. https://doi.org/10.5772/intechopen.104935.
Agu, C.?M., Orakwue, C.?C., Ani, O.?N., & Chinedu, M.?P. (2025). Kinetics, Thermodynamics and Characterization of Neem Seeds (Azadirachta Indica) Oil Extraction: Extensive Study of the Processes. Green Technologies and Sustainability, 3(1), 100126. DOI: 10.1016/j.grets.2024.100126.
Bronzo B. Farias, C., Almeida, F. C. G., Silva, I. A., Souza, T. C., Meira, H. M., Soares da Silva, R. C. F., Luna, J. M., Santos, V. A., Converti, A., Banat, I. M., & Sarubbo, L. A. (2021). Production of green surfactants: Market prospects. Electronic Journal of Biotechnology, 51, 28–39. https://doi.org/10.1016/j.ejbt.2021.02.002.
Brozos, C., Rittig, J. G., Akanny, E., Bhattacharya, S., Kohlmann, C., & Mitsos, A. (2025). Predicting the temperature-dependent CMC of surfactant mixtures with graph neural networks. Computers & Chemical Engineering, 198, 109085. https://doi.org/10.1016/j.compchemeng.2025.109085.
Das, P., Sharma, N., Puzari, A., Kakati, D. K., & Devi, N. (2020). Synthesis and characterization of neem (Azadirachta indica) seed oil-based alkyd resins for efficient anticorrosive coating application. Polymer Bulletin. https://doi.org/10.1007/s00289-020-03120-8.
Duan, Y., Li, Y., Chen, B., Ai, C., & Wu, J. (2024). Preparation and performance evaluation of a novel temperature-resistant anionic/nonionic surfactant. Scientific Reports, 14(1), 5710. https://doi:10.1038/s41598-024-56342-5.
Farias, C. B. B., Almeida, F. C. G., Silva, I. A., Souza, T. C., Meira, H. M., Soares da Silva, R. C. F., Luna, J. M., Santos, V. A., Converti, A., Banat, I. M., & Sarubbo, L. (2021). Production of green surfactants: Market prospects. Electronic Journal of Biotechnology, 51(4). https://doi.org/10.1016/j.ejbt.2021.02.002.
Foo, K. S., Bavoh, C. B., Lal, B., & Mohd Shariff, A. (2020). Rheology Impact of Various Hydrophilic-Hydrophobic Balance (HLB) Index Non-Ionic Surfactants on Cyclopentane Hydrates. Molecules, 25(16). https://doi:10.3390/molecules25163725.
Hundie, K. B., Abdissa, D., & Bayu, A. B. (2022). Extraction, optimization, and characterization of neem seed oil via Box-Behnken design approach. Journal of the Turkish Chemical Society Section A: Chemistry, 9(2), 513–526. https://doi.org/10.18596/jotcsa.1039997.
Ibrahim, A. A., Jimoh, A., Yahya, M. D. & Auta, M. (2018). Proximate Analysis and Characterization of some Aquatic Wastes as Potential Feedstock for Chitin/Chitosan Production. Nigeria Journal of Engineering and Applied Sciences (NJEAS). 5(1). 93 -101.
Ismaila, S. S., Sani, Y., Sani, A. A., Yakasai, S. M., Momoh, H., & Mohammed, S. E. (2022), Determination of Fatty Acids and Physicochemical Properties of Neem (Azadrachta Indica L) Seed Oil Extracts, Dutse Journal of Pure and Applied Sciences (DUJOPAS), 8(1a), 2635-3490. https://doi.org/10.4314/dujopas.v8i1a.16.
Jiang, J., Wang, Z., Wang, C., Shi, L., Hou, J., & Zhang, L. (2022). Model Emulsions Stabilized with Nonionic Surfactants: Structure and Rheology Across Catastrophic Phase Inversion. ACS Omega, 7(48), 44012-44020. https://doi:10.1021/acsomega.2c05388.
Liberto, D. (2024). What is crude oil, and why is it important to investors? Investopedia. https://www.investopedia.com/terms/c/crude-oil.asp.
Liu, Y., Liu, Z., Wang, Y., Hu, Z., Zhu, Z., Jie, Y., & Zhang, Y. (2024). Effect of Different Surfactants and Nanoparticles on Pore-Scale Oil Recovery Process Using Heterogeneous Micromodel. International Journal of Energy Research, 2024(1), 5319748. https://doi.org/10.1155/2024/5319748.
Man, Z., & Wu, W. (2024). Study on the Synthesis, Surface Activity, and Self-Assembly Behavior of Anionic Non-Ionic Gemini Surfactants. Molecules, 29(8), 1725. https://doi.org/10.3390/molecules29081725.
Massarweh, O., & Abushaikha, A. S. (2020). The use of surfactants in enhanced oil recovery: A review of recent advances. Energy Reports, 6, 652–659. http://dx.doi.org/10.1016/j.egyr.2020.11.009.
Mohammed, U., Mark, T. J. & Ibrahim, A. A. (2025). Predicting Rate of Penetration Using Machine Learning: Unravelling the Crucial Role of Mud Temperature. Nigerian Journal of Oil and Gas Technology, 5(1), 179-192.
Nwidee, L. N., Theophilus, S. C., Barifcani, A., Sarmadivaleh, M., & Iglauer, S. (2016). EOR Processes, Opportunities and Technological Advancements. pp 1-202. http://doi.org/10.5772/64828.
Obasi, H. C., et al. (2023). Green Synthesis of Bio-Surfactants from Plant Oils: Process Optimization and Environmental Applications. Renewable Energy, 215, 1180-1190.
Ochi, D. O., Umeuzuegbu, J. C., Mahmud, H., Ekebafe, L. O., & Ani, M. O. (2020). Transesterification of Neem (Azadirachta Indica) Seed Oil. Nigerian Research Journal of Chemical Sciences, 8(1), 91-103. http://www.unn.edu.ng/nigerian-research-journal-of-chemical-sciences/
Okoro, O. V., Adewale, A. A., Nwankwo, I. U., Hassan, M. A., Eze, C. N., & Oladipo, M. O. (2023). Sustainable Extraction of Bio-Oils from Non-Edible Seeds for Green Surfactant Synthesis. Journal of Cleaner Production, 423, 139840.
Rossen, W. R. (1996). Chapter 11: Foams in enhanced oil recovery. In Foams: Theory, Measurements, and Applications. (pp. 413-464): Taylor & francis, Routledge. New York, US.
Sani, A. M. and Mohammed, A. M. (2024). Phytochemicals, proximate analysis, and characterizations of neem (Azadirachta indica) seeds oil. (2025). Arizona Journal of Biochemistry and Research, 59(71)
Sani, S.D., Hamza, M. F., & Makwashi, N. (2024). Assessment of coconut surfactant’s foam properties for enhanced oil recovery. https://www.researchgate.net/publication/385524564_Assessment_of_Coconut_Surfactant's_Foam_Properties_for_Enhanced_Oil_Recovery.
Siirola, J. J. (2014). Speculations on global energy demand and supply going forward. Current Opinion in Chemical Engineering, 5, 96–100. https://doi.org/10.1016/j.coche.2014.07.002.
Siqueira de Azevedo Sá, C., Ladchumananandasivam, R., Rossi, C. G., Silva, R. K. d., Camboim, W. d. S., Zille, A., . . . Silva, K. K. d. O. S. (2022). Characterization of a natural surfactant from an essential oil from neem (Azadirachta indica A. Juss) for textile industry applications. Textile Research Journal, 92(15-16), 2643-2650. https://doi:10.1177/00405175211007518.
Thomas, S. (2008). Enhanced oil recovery—An overview. Oil & Gas Science and Technology–Revue de l’IFP, 63(1), 9–19. http://dx.doi.org/10.2516/ogst:2007060
Tunio, S. Q., Tunio, A. H., Ghirano, N. A., & El Adawy, Z. M. (2011). Comparison of different enhanced oil recovery techniques for better oil productivity. International Journal of Applied Science and Technology, 1(5). https://portal.abuad.edu.ng/lecturer/documents/1586864922enhanced_oil_recvery_3.pdf.
Yao, Z., Zhang, Y., Zheng, Y., Xing, C., & Hu, Y. (2022). Enhance flows of waxy crude oil in offshore petroleum pipeline: A review. Journal of Petroleum Science and Engineering, 208(C), 109530. https://doi.org/10.1016/j.petrol.2021.109530.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Array