Abstract
This review explores hydrogen storage methods with a focus on their suitability for Nigeria’s tropical climate, which presents unique environmental challenges such as high humidity, temperature fluctuations, and limited cold storage infrastructure. The objective of the study is to identify hydrogen storage solutions that are both technically viable and contextually appropriate for Nigeria, supporting the nation's transition toward cleaner energy sources. The scope of the review encompasses both physical-based and material-based storage methods. A comparative evaluation was conducted using a structured, literature-based qualitative multi-criteria decision analysis framework that assessed each method based on safety, energy efficiency, cost-effectiveness, scalability, and long-term durability under tropical conditions. The findings reveal that while compressed gas remains the most established technology, it can pose risks under high ambient temperatures. Liquid hydrogen and cryo-compressed options were found to be energy-intensive and logistically challenging for tropical deployments. Among material-based methods, metal hydrides emerged as the most promising due to their thermal stability, compactness, and safer handling features. The study concludes that metal hydrides, particularly those tailored for moderate temperature operation, offer a strategic pathway for hydrogen storage in Nigeria. The review highlights the importance of local adaptation, calling for policies and research focused on climate-adapted technologies, integration with Nigeria's renewable energy sources, and investment in infrastructure. These findings provide critical insights for stakeholders aiming to develop a sustainable hydrogen economy in tropical regions.
References
Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy, and storage: Review and recommendation. International Journal of Hydrogen Energy, 44(29), 15072-15086.
Ali, S., Abbas, N., Khan, S. A., Malik, I., & Mansha, M. (2024). Chemical?based Hydrogen Storage Systems: Recent Developments, Challenges, and Prospectives. Chemistry–An Asian Journal, 19(16), e202400320.
Barthélémy, H. (2012). Hydrogen storage–Industrial prospectives. International Journal of Hydrogen Energy, 37(22), 17364-17372.
Becherif, M., Ramadan, H.S., Cabaret, K., Picard, F., Simoncini, N. & Bethoux, O. (2015). Hydrogen energy storage: new techno-economic emergence solution analysis. Energy Procedia, 74, 371–380.
Bhandari, R. & Adhikari, N. (2024). A comprehensive review on the role of hydrogen in renewable energy systems. International Journal of Hydrogen Energy, 82, 923-951.
Bouramdane, A.A. (2024). Understanding and Optimizing Hydrogen Transport Technologies for 21st Century Smart Cities: Innovation for Morocco's Green Interconnections in Hydrogen, Ammonia, and Kerosene Production. In The Emerald Handbook of Smart Cities in the Gulf Region: Innovation, Development, Transformation, and Prosperity for Vision 2040 (pp. 405-480). Emerald Publishing Limited.
Chen, G., Liang, D., Kang, Z., Fan, J., Fan, S., & Zhou, X. (2025). Review of Hydrogen Storage in Solid-State Materials. Energies, 18(11), 2930.
Dresselhaus, M., Crabtree, G., Buchanan, M., & Mallouk, T. (2003). Basic research needs for the hydrogen economy. Technical report, Argonne National Laboratory, Basic Energy Sciences, U.S. Department of Energy. http://www.sc.doe.gov/bes/hydrogen.pdf
Durbin, D. J., & Malardier-Jugroot, C. (2013). Review of hydrogen storage techniques for on-board vehicle applications. International Journal of Hydrogen Energy, 38(34), 14595-14617.
Edwards, P. P., Kuznetsov, V. L., & David, W. I. (2007). Hydrogen energy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1853), 1043–1056. https://doi.org/10.1098/rsta.2006.1965
Eftekhari, A., & Fang, B. (2017). Electrochemical hydrogen storage: Opportunities for fuel storage, batteries, fuel cells, and supercapacitors. International Journal of Hydrogen Energy, 42(40), 25143-25165.
Epelle, E. I., Obande, W., Udourioh, G. A., Afolabi, I. C., Desongu, K. S., Orivri, U., Gunes, B., & Okolie, J. A. (2022). Perspectives and prospects of underground hydrogen storage and natural hydrogen. Sustainable Energy & Fuels, 6(14), 3324-3343.
Gadipelli, S., Howard, C. A., Guo, J., Skipper, N. T., Zhang, H., Shearing, P. R., & Brett, D. J. (2020). Superior multifunctional activity of nanoporous carbons with widely tunable porosity: enhanced storage capacities for carbon?dioxide, hydrogen, water, and electric charge. Advanced Energy Materials, 10(9), 1903649.
Gulraiz, A., Al Bastaki, A. J., Magamal, K., Subhi, M., Hammad, A., Allanjawi, A., ... & Said, Z. (2025). Energy advancements and integration strategies in hydrogen and battery storage for renewable energy systems. iScience, 28(3).
Habib, A. A., Sakib, A. N., Mona, Z. T., Bhuiyan, M. M. H., Kazempoor, P., & Siddique, Z. (2023). Hydrogen-Assisted aging applied to storage and sealing materials: A comprehensive review. Materials, 16(20), 6689.
Hirscher, M. (2010). Handbook of hydrogen storage. WILEY-VCH.
?lbahar, E., Çolak, M., Kara?an, A. & Kaya, ?. (2022). A combined methodology based on Z-fuzzy numbers for sustainability assessment of hydrogen energy storage systems. International Journal of Hydrogen Energy, 47(34), 15528-15546.
Jia, Y., Sun, C., Shen, S., Zou, J., Mao, S. S., & Yao, X. (2015). Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage. Renewable and Sustainable Energy Reviews, 44, 289-303.
Keçeba?, A. & Kayfeci, M. (2019). Hydrogen properties. In Solar Hydrogen Production (pp. 3-29). Academic Press.
Khalili, Y., Yasemi, S., Bagheri, M., & Sanati, A. (2025). Advancements in hydrogen storage technologies: Integrating with renewable energy and innovative solutions for a sustainable future. Energy Geoscience, 100408.
Klop?i?, N., Grimmer, I., Winkler, F., Sartory, M., & Trattner, A. (2023). A review on metal hydride materials for hydrogen storage. Journal of Energy Storage, 72, 108456.
Kojima, Y., Miyaoka, H., & Ichikawa, T. (2013). Hydrogen storage materials. In S. L. Suib (Ed.), New and future developments in catalysis (pp. 99–136). Elsevier. https://doi.org/10.1016/B978-0-444-53880-2.00005-7
Le, T. H., Kim, M. P., Park, C. H., & Tran, Q. N. (2024). Recent developments in materials for physical hydrogen storage: A review. Materials, 17(3), 666.
Levin, D. B., & Chahine, R. (2010). Challenges for renewable hydrogen production from biomass. International Journal of Hydrogen Energy, 35(10), 4962-4969.
Liu, W., Sun, L., Li, Z., Fujii, M., Geng, Y., Dong, L., & Fujita, T. (2020). Trends and future challenges in hydrogen production and storage research. Environmental Science and Pollution Research, 27, 31092-31104.
Makridis, S. S. (2016). Hydrogen storage and compression. arXiv Chemical Physics, 1-28.
Mazloomi, K., & Gomes, C. (2012). Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews, 16(5), 3024-3033.
McQueen, S., Stanford, J., Satyapal, S., Miller, E., Stetson, N., Papageorgopoulos, D., ... & Costa, R. (2020). Department of energy hydrogen program plan (No. DOE/EE-2128). U.S. Department of Energy.
Megía, P. J., Vizcaíno, A. J., Calles, J. A., & Carrero, A. (2021). Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review. Energy & Fuels, 35(20), 16403-16415.
Mekonnin, A. S., Wac?awiak, K., Humayun, M., Zhang, S., & Ullah, H. (2025). Hydrogen storage technology, and its challenges: a review. Catalysts, 15(3), 260.
Midilli, A., Ay, M., Dincer, I. & Rosen, M.A. (2005). On hydrogen and hydrogen energy strategies: I: current status and needs. Renewable and Sustainable Energy Reviews, 9(3), 255-271.
Milanese, C., Jensen, T. R., Hauback, B. C., Pistidda, C., Dornheim, M., Yang, H., ... & Baricco, M. (2019). Complex hydrides for energy storage. international journal of hydrogen energy, 44(15), 7860-7874.
Nanda, S., Li, K., Abatzoglou, N., Dalai, A. K., & Kozinski, J. A. (2017). Advancements and confinements in hydrogen production technologies. In Bioenergy systems for the future (pp. 373-418). Woodhead Publishing.
Okolie, J. A., Patra, B. R., Mukherjee, A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals, and metallurgy. International Journal of Hydrogen Energy, 46(13), 8885-8905.
Onafeso, O. D. (2023). The climate of Nigeria and its role in landscape modification. In Landscapes and Landforms of Nigeria (pp. 33-38). Cham: Springer Nature Switzerland.
Pistidda, C. (2021). Solid-state hydrogen storage for a decarbonized society. Hydrogen, 2(4), 428-443.
Prabhukhot, P. R., Wagh, M. M., & Gangal, A. C. (2016). A review on solid state hydrogen storage material. Advances in Energy and Power, 4(2), 11-22.
Ren, J., Musyoka, N. M., Langmi, H. W., Mathe, M., & Liao, S. (2017). Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review. International Journal of Hydrogen Energy, 42(1), 289-311.
Romanos, J., Abou Dargham, S., Roukos, R., & Pfeifer, P. (2018). Local pressure of supercritical adsorbed hydrogen in nanopores. Materials, 11(11), 2235.
Rusman, N. A. A., & Dahari, M. (2016). A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 41(28), 12108-12126.
Schitea, D., Deveci, M., Iordache, M., Bilgili, K., Akyurt, I.Z. and Iordache, I. (2019). Hydrogen mobility roll-up site selection using intuitionistic fuzzy sets based WASPAS, COPRAS and EDAS. International Journal of Hydrogen Energy, 44(16), 8585-8600.
Tzimas, E., Filiou, C., Peteves, S. D., & Veyret, J. B. (2003). Hydrogen storage: State-of-the-art and future perspective. EU Commission, JRC Petten, EUR 20995EN, 1511-1519.
Von Colbe, J. B., Ares, J. R., Barale, J., Baricco, M., Buckley, C., Capurso, G., ... & Dornheim, M. (2019). Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. International journal of hydrogen energy, 44(15), 7780-7808.
Wagemans, R.W., van Lenthe, J.H., de Jongh, P.E., van Dillen, A.J. & de Jong, K.P. (2005) ‘Hydrogen storage in magnesium clusters: quantum chemical study’, Journal of the American Chemical Society, 127, 16675–16680.
Webb, C. J. (2015). A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. Journal of Physics and Chemistry of Solids, 84, 96-106.
Yang, M., Hunger, R., Berrettoni, S., Sprecher, B., & Wang, B. (2023). A review of hydrogen storage and transport technologies. Clean Energy, 7(1), 190-216.
Zhang, B. & Wu, Y. (2017). Recent advances in improving performances of the lightweight complex hydrides Li-Mg-NH system. Progress in Natural Science: Materials International, 27(1), 21-33.
Zhang, Y., Li, J., Zhang, T., Wu, T., Kou, H., & Xue, X. (2017). Hydrogenation thermokinetics and activation behavior of nonstoichiometric Zr-based Laves alloys with enhanced hydrogen storage capacity. Journal of Alloys and Compounds, 694, 300–308.
Zhang, Y.H., Jia, Z.C., Yuan, Z.M., Yang, T., Qi, Y. & Zhao, D.L. (2015). Development and application of hydrogen storage. Journal of Iron and Steel Research International, 22(9), 757-770.
Züttel, A. (2003). Materials for hydrogen storage. Materials Today, 6(9), 24-33.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Array
