2D FLAT PLATE HEAT CONDUCTION WITH CONSTANT THERMAL CONDUCTIVITY: IMPLEMENTING THE ALTERNATING DIRECTION IMPLICIT METHOD

Supplementary Files

PDF

Keywords

Alternating Direction Implicit
Heat Conduction
Grid Size
Analytical Solution
Numerical Solution

How to Cite

Aprecio, N. V., Garcia, H. R., Roy Jr., F. ., Igno, J. J., & Lomboy, M. J. (2025). 2D FLAT PLATE HEAT CONDUCTION WITH CONSTANT THERMAL CONDUCTIVITY: IMPLEMENTING THE ALTERNATING DIRECTION IMPLICIT METHOD. Journal of Engineering & Technological Advances , 9(2), 96-114. https://doi.org/10.35934/segi.v9i2.118

Abstract

The heat equation is widely used in engineering applications to predict temperature distribution in materials subjected to heating or cooling, such as in high-temperature furnaces and pipeline-based heat networks. This study applies the alternating direction implicit (ADI) method to solve a two-dimensional heat conduction problem and evaluates its accuracy through grid convergence and error analysis. Results indicate that finer grid resolutions improve numerical accuracy, with absolute errors decreasing from 15.523 (for a grid size of 110) to 0.493 (for a grid size of 190) at the centre of the plate. Computational efficiency analysis reveals a trade-off, as execution times increase from 0.089907s to 0.432780s for the same grid refinements. These findings confirm the ADI method’s reliability for thermal simulations, offering a balanced approach between precision and computational cost. The study concludes that the ADI method is a robust and efficient tool for modelling heat conduction in engineering applications.

https://doi.org/10.35934/segi.v9i2.118

References

Ajeel, O. A., & Gaftan, A. M. (2023). Using Crank-Nicolson numerical method to solve heat-diffusion problem. Tikrit Journal of Pure Science, 28(3), 101-104.

Beckermann, B., & Townsend, A. (2017). On the singular values of matrices with displacement structure. SIAM Journal on Matrix Analysis and Applications, 38(4), 1227-1248.

Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of heat in solids (2nd ed.). Oxford University Press.

Cheng, A. H. D., & Cheng, D. T. (2005). Heritage and early history of the boundary element method. Engineering analysis with boundary elements, 29(3), 268-302.

Crank, J. (1984). Free and moving boundary problems. Clarendon Press.

Idoko, I. P., Ezeamii, G. C., Idogho, C., Peter, E., Obot, U. S., & Iguoba, V. A. (2024). Mathematical modeling and simulations using software like MATLAB, COMSOL and Python. Magna Scientia Advanced Research and Reviews, 12(2), 062-095.

Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2007). Fundamentals of heat and mass transfer (6th ed.). Wiley.

Ivrii, V. (2022). Partial differential equations. https://www.math.toronto.edu/ivrii/PDE-textbook/PDE-textbook.pdf

Kaw, A., & Garapati, S. H. (2011). Parabolic differential equations. https://mathforcollege.com/nm/mws/gen/10pde/mws_gen_pde_txt_parabolic.pdf

Lu, A., & Wachspress, E. L. (1991). Solution of Lyapunov equations by alternating direction implicit iteration. Computers & Mathematics with Applications, 21(9), 43-58.

Mathews, J. H., & Fink, K. D. (2004). Numerical methods using MATLAB. Pearson.

Norzilah, A. H., & Nursalasawati, R. (2019). Alternating direction implicit (ADI) method for solving two dimensional (2-D) transient heat equation. ASM Science Journal, Special for SKSM, 26(6), 28-33.

Özi?ik, M. N. (2017). Heat conduction. John Wiley & Sons.

Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Taylor & Francis.

Peaceman, D. W., & Rachford, Jr, H. H. (1955). The numerical solution of parabolic and elliptic differential equations. Journal of the Society for industrial and Applied Mathematics, 3(1), 28-41.

Reddy, J. N. (2005). An introduction to the finite element method (3rd ed.). McGraw-Hill.

Roy, A. K., & Kumar, K. (2021). 2D heat conduction on a flat plate with Ti6Al4V alloy under steady state conduction: A numerical analysis. Materials Today: Proceedings, 46, 896-902.

Saqib, M., Hasnain, S., & Mashat, D. S. (2017). Computational solutions of two dimensional convection diffusion equation using crank-nicolson and time efficient ADI. American Journal of Computational Mathematics, 7(03), 208–227.

Smith, G. D. (1985). Numerical solution of partial differential equations: Finite difference methods. Clarendon Press.

Strauss, W. A. (2008). Partial differential equations: An introduction. John Wiley & Sons.

Strikwerda, J. C. (2004). Finite difference schemes and partial differential equations (2nd ed.). Society for Industrial and Applied Mathematics.

Wachspress, E. L. (2008). Trail to a Lyapunov equation solver. Computers & Mathematics with Applications, 55(8), 1653-1659.

Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The finite element method: Its basis and fundamentals (6th ed.). Butterworth-Heinemann.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Array