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Highlights: 

. Demonstrates the role of difference equations in modelling electrical circuit behaviour. 

. Highlights how difference equations capture transient and steady-state responses. 

. Establishes difference equations as practical tools in electrical engineering analysis, with clarified scalability 

and stability. 

Abstract: This study explores the application of difference equations in modelling and 

analysing electrical circuits, specifically 4-mesh DC, RL, and RLC topologies. With the 

increasing integration of discrete-time simulation and digital control in engineering systems, 

traditional methods such as mesh analysis may be limited by computational complexity. 

Difference equations offer a discrete framework to simulate circuit dynamics using time-

stepped recurrence relations. First- and second-order difference equations are applied and 

derived from RL and RLC circuit models in continuous time using discrete-time 

approximations. Solution of ladder circuits is through characteristic equation for second-order 

recurrence relations, whereas recursive formulations are adopted to analyse transient responses 

in RL and RLC circuits. The study defines complexity in terms of equation count and compares 

it across methods to demonstrate improved scalability. Realistic component values are selected 

to reflect conditions in actual electrical systems, such as inductive startup loads and resonant 

filter behaviour. The resulting current responses demonstrate convergence and system 

stabilization over time. Stability is confirmed analytically through characteristic roots and time-

step considerations. These visualizations reinforce the suitability of difference equations for 

modelling dynamic responses in power electronics, sensor systems, and digital control 

applications. The findings highlight how difference equations provide a viable alternative for 

efficient and scalable analysis in modern electrical engineering. 

Keywords: Difference Equations; Electrical Circuits; Ladder Circuits; RL Circuit; RLC Circuit

1. Introduction 

Direct Current (DC) circuit analysis is important in Electrical Engineering. It establishes 

fundamental principles in designing unidirectional current systems. The principles in DC circuit 
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analysis serve as the foundation for enhancing performance and having the safety of solar panel 

installations and electric vehicles maintained (Bigelow, 2020). It encloses the principles behind 

many electrical components including resistive circuits, capacitors, and magnetic circuits. 

These provide a foundation for understanding how electric currents behave in various systems 

aiding electrical engineers. It explains how resistors control current flow, how capacitors and 

inductors store and release energy, and explains how magnetic fields interact with electric 

circuits (Sedra et al., 2020). Having these concepts mastered is needed for anyone seeking to 

analyze, design, and troubleshoot electrical systems safely and effectively (Fiore, 2020). 

Scholars that desire to tackle advanced electrical systems must first understand DC circuit 

analysis. DC analysis principles allow modern electrical engineers to create simulation tools 

and software (Rahmani-Andebili, 2020). The analysis of electrical circuits heavily depends on 

three fundamental network components including Resistor-Inductor (RL) and Resistor-

Inductor-Capacitor (RLC) along with ladder networks (Alexander & Sadiku, 2021). The 

analysis of transient behavior in electrical systems depends on RL circuits because they 

demonstrate fundamental understanding of systems with significant inductive elements. RLC 

circuits that can combine both inductance and capacitance are important components for the 

analysis of resonance behavior and filtering systems.  

The structure of ladder networks that are repetitive in nature makes them suitable for digital-to-

analog converter as well as filter designs. The time-domain examination of fractional electrical 

circuits also works with ladder elements to model complex systems (Piotrowska & Rogowski, 

2021). In deriving generalized formulas that can simplify the computation of electrical 

properties in homogeneous ladder networks, difference equations play a vital role in allowing 

for a more efficient circuit modeling and analysis (Konjeti & Mondal, 2023). 

A difference equation is used to relate successive members of a series and differences (Leydold, 

2024). It is usually recursive, and it allows computing the outputs of a computing system based 

on their inputs and their preceding outputs, and it can be applied to computing the transform of 

a system (Ahmed et al., 2022). Being the discrete analog of the differential equations, it 

propagates functions on discrete steps, and the interval between them is typically constant such 

as one (Weisstein, 2025; The Editors of Encyclopaedia Britannica, 2025). 

The first-order equations have dependence on a term preceding it and potentially a constant 

resulting in simple linear recurrences, and the second-order equations have two terms preceding 

them and a higher degree of complexity (Presa et al., 2025; Hammond, 2020). The behavior of 
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the system after each initial condition and coefficients is either convergent, oscillatory, or 

divergent (Hammond, 2020; Presa et al., 2025). These are referred to as dynamic models, and 

these equations are commonly applied in fields such as population growth and signal processing 

(Green, 2024; Kavitha & Raj, 2024). 

1.1.  Research Objectives 

The widespread accessibility of mesh analysis for DC circuit analysis has not eliminated the 

necessity to develop alternative methods that better suit discrete-time modeling and digital 

simulation. The accurate representation of electrical circuits under sampled data conditions 

requires different equations because modern electrical systems increasingly use digital control 

strategies. The paper focuses on the application of difference equations for electrical circuits. 

This paper demonstrates the advantages of using difference equations instead of traditional 

methods. More specifically, it aims to: 

1. To apply difference equations in the analysis of ladder, RL, and RLC circuits using discrete-

time formulations. 

2. To highlight the relevance of difference equations in modern engineering systems, 

particularly in digital control, sensor networks, and power electronics, through analysis of 

transient response and system behaviour. 

3. To compare the complexity of difference equation and mesh methods in terms of symbolic 

equation count and assess stability through characteristic analysis. 

1.2. Introduction to First-Order Difference Equation 

First-order linear difference equations can be solved using a method similar to that used for 

linear differential equations. Consider the initial value problem: 

 𝑋𝑘+1 =  α𝑋𝑘  +  β                                    (1) 

 𝑋0 =  1,                                           (2) 

Here, α is a constant. This qualifies as an initial value problem since the starting term 𝑥0 is 

given. The general solution is obtained by combining the homogeneous and particular solutions: 

where α is a fixed constant.  

 𝑋𝑘 =  𝐻𝑘  +  𝑃𝑘  (3) 
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The homogeneous component satisfies the associated homogeneous equation: 𝑋𝑘+1 = α𝑋𝑘. It is 

evident that the solution to this homogeneous equation is a constant sequence scaled by k, 

expressed as: 𝐻𝑘  = α𝑘𝐻0  where 𝐻0 is an arbitrary constant to be determined later by initial 

conditions. 

Next, a particular solution 𝑃𝑘 must satisfy: 

 𝑃𝑘+1 =  α𝑃𝑘  +  β  (4) 

Assuming a constant solution 𝑃𝑘 = C, substitution yields. Then we have C = αC + β, or C(1-α) 

= β, which implies that C can be determined only if α = 0 or adjustments are made. Assuming 

α ≠ 0, the solution simplifies to: 

 
𝑃𝑘 =  

β

1 − α
  

 (5) 

Thus, the general solution becomes: 

 
𝑋𝑘 =  α𝑘𝐻0 +  

β

1 − α
  

 (6) 

To determine the value of 𝐻0, we apply the initial condition. Setting k = 0 yields: 

 
1 = 𝑋0 = α0𝐻0 +

β

1 − α
  

 (7) 

which simplifies to: 

 
𝐻0 = 1 − 

β

1 − α
  

 (8) 

Substituting 𝐻0back into the general solution provides: 

 
𝑋𝑘 = (1 −  

β

1 − α
)α𝑘  +  

β

1 − α
  

 (9) 

Notably, solving a first-order linear difference equation requires the specification of a single 

piece of information, typically an initial or final condition, similar to solving a first-order 

differential equation (Sendov, 2020). 

1.3. Introduction to Second-Order Difference Equation 
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Second-order linear difference equations extend the first-order approach. Consider the initial 

value problem defined by: 

 𝑥𝑡+1 = 𝑎𝑥𝑡+1 + 𝑏𝑥𝑡 = 𝑐𝑡  (10) 

where a and b are constants, and 𝑐𝑡 is a given forcing function. The general solution is 

composed of both a homogeneous and a particular part: 

 𝑥𝑡 = 𝑥𝑡
𝐻 + 𝑥𝑡

𝑃  (11) 

The homogeneous component satisfies the associated homogeneous equation: 

 𝑥𝑡+1 + 𝑎𝑥𝑡+1 + 𝑏𝑥𝑡 = 0  (12) 

Assuming 𝑥𝑡 =  𝜆𝑡, substitution into the homogeneous equation yields the characteristic (or 

auxiliary) equation: 

 𝜆2 + 𝑎λ + b = 0  (13) 

The roots of this quadratic equation determine the form of the homogeneous solution, as will 

be discussed in subsequent sections. 

Meanwhile, the particular solution 𝑥𝑡
𝑃 depends on the form of 𝑐𝑡, such as constant, polynomial, 

or exponential functions. The complete solution is:  

 𝑥𝑡 = 𝑥𝑡
𝐻 + 𝑥𝑡

𝑃 (14) 

Unlike first-order cases, second-order difference equations require two initial conditions (e.g., 

𝑥0  and 𝑥1) to fully determine the constants. This is analogous to solving second-order 

differential equations (Hammond, 2020). 

While existing literature often focuses on either traditional mesh analysis or continuous-time 

differential equation modelling of circuits, this study offers a distinct approach by formulating 

and solving both RL and RLC circuits using discrete-time difference equations, alongside a full 

analytical derivation for a ladder-type DC mesh network. Unlike prior works, such as those of 

Salehizadeh & Nouri (2020), which emphasize the pedagogical value in the use of difference 

equations but lack convergence and complexity comparisons, this paper offers complete 

recursive solutions, a characteristic equation for ladder circuits, and a count analysis on 

equations versus mesh methods. Moreover, the use of fixed recurrence structures and boundary 
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condition adjustments across increasing mesh sizes showcases a scalable aspect that is 

especially suitable for digital simulation environments. This integrated treatment of first- and 

second-order difference equations across circuit types contributes to enhance the area of 

discrete-time electrical circuit analysis, not just as a modelling tool but also in broadening one's 

analytical view. 

2. Methodology 

This section solves three circuits using the difference equations method. Figure 1 shows the 4-

mesh DC circuit used in this study. 

2.1. Solving Mesh Circuit Using Difference Equation 

 

Figure 1. 4-Mesh DC circuit 

Ladder circuits like the one above are commonly found in resistive sensor arrays, voltage 

divider networks, and digital-to-analog conversion hardware. Understanding current 

distributions in such networks is crucial for accurate signal processing and component 

protection (Zhang, 2023). The circuit is analyzed using mesh currents 𝐼1 to 𝐼4. Mesh 1 to Mesh 

4 correspond to the current loops 𝐼1 through 𝐼4 shown in the circuit diagram. 

The circuit difference equation is given by: 

 6𝐼𝑛 − 2(𝐼𝑛−1 + 𝐼𝑛+1) = 0 (15) 

Dividing throughout by 2 simplifies it to: 

 3𝐼𝑛 − (𝐼𝑛−1 + 𝐼𝑛+1) = 0 (16) 

Rearranging yields the standard form: 

 𝐼𝑛+1 = 3𝐼𝑛 − 𝐼𝑛−1 (17) 

This is a second-order linear difference equation. 



 

7 
 

Assume solution: 

 𝐼𝑛 = 𝑘𝜆𝑛 (18) 

Substituting into Equation 17: 

 𝑘𝜆𝑛+1 = 3𝑘𝜆𝑛 − 𝑘𝜆𝑛−1 (19) 

Shift indices to match powers of 𝜆𝑛: 

 𝜆𝑛+1 = 𝑘𝜆𝑛 − 𝜆𝑛−1 (20) 

Divide both sides by 𝜆𝑛−1: 

 

 𝜆2 = 3𝜆 − 1 (21) 

 𝜆2 − 3𝜆 + 1 = 0 (22) 

Using quadratic formula: 

 
𝜆 =

−(−3) ± √(−3)2 − 4(1)(1)

2(1)
=

3 ± √9 − 4

2
=

3 ± √5

2
 

(23) 

Thus:  

 
𝜆1 =

3 + √5

2
,     𝜆2 =

3 − √5

2
      

(29) 

Hence: 

 
𝐼𝑛 = 𝐴(

3 + √5

2
)𝑛 + 𝐵(

3 − √5

2
)𝑛 

(30) 

Write expressions for 𝐼1, 𝐼2, 𝐼3, 𝑎𝑛𝑑 𝐼4: 

 
𝐼1 = 𝐴(

3 + √5

2
)1 + 𝐵(

3 − √5

2
)1 

(24) 

 
𝐼2 = 𝐴(

3 + √5

2
)2 + 𝐵(

3 − √5

2
)2 

(25) 
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𝐼3 = 𝐴(

3 + √5

2
)3 + 𝐵(

3 − √5

2
)3 

(26) 

 
𝐼4 = 𝐴(

3 + √5

2
)4 + 𝐵(

3 − √5

2
)4 

(27) 

 

Applying Kirchhoff’s Voltage Law (KVL) around Mesh 1: 

 12 =  6𝐼1 − 2𝐼2 (28) 

Applying KVL around Mesh 4: 

 0 =  −2𝐼3 + 6𝐼4 (29) 

Substituting 𝐼1𝑎𝑛𝑑 𝐼2 into Equation 28:  

 

12 =  6 [𝐴 (
3 + √5

2
)

1

+ 𝐵 (
3 − √5

2
)

1

] − 2[𝐴 (
3 + √5

2
)

2

+ 𝐵 (
3 − √5

2
)

2

] 
(30) 

Simplifying: 

 
6 =  [𝐴 (

9 + 3√5

2
) + 𝐵 (

9 − 3√5

2
)] − [𝐴 (

7 + 3√5

2
) + 𝐵 (

7 − 3√5

2
)] 

(31) 

 6 − 𝐴 = 𝐵 (32) 

Substituting 𝐼3 and 𝐼4 into Equation 29:  

 

0 =  −2[𝐴 (
3 + √5

2
)

3

+ 𝐵(
3 − √5

2
)3]  + 6[𝐴 (

3 + √5

2
)

4

+ 𝐵(
3 − √5

2
)4] 

(33) 

Simplifying: 

0 = [𝐴(−18 − 8√5) + 𝐵(−18 + 8√5)] + [𝐴(141 + 63√5)

+ 3𝐵(141 − 63√5)] 

(34) 

 0 = 𝐴(123 + 55√5) + 𝐵(123 − 55√5) (35) 
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Solving for A and B using the previously established Equation 32 and Equation 35:  

 0 = 𝐴(123 + 55√5) + (6 − 𝐴)(123 − 55√5) (36) 

 
𝐴 = 3 −

369√5

275
 

(37) 

 
𝐵 = 6 − (3 −

369√5

275
) = 3 +

369√5

275
 

(38) 

Substituting A and B into 𝐼𝑛: 

 
𝐼𝑛 = (3 −

369√5

275
) (

3 + √5

2
)

𝑛

+ (3 +
369√5

275
) (

3 − √5

2
)

𝑛

 
(39) 

Solving for 𝐼1, 𝐼2, 𝐼3 𝑎𝑛𝑑 𝐼4: 

 

𝐼1 = (3 −
369√5

275
) (

3 + √5

2
)

1

+ (3 +
369√5

275
) (

3 − √5

2
)

1

=
126

55
𝐴 

(40) 

 

𝐼2 = (3 −
369√5

275
) (

3 + √5

2
)

2

+ (3 +
369√5

275
) (

3 − √5

2
)

2

=
48

55
𝐴 

(41) 

 

𝐼3 = (3 −
369√5

275
) (

3 + √5

2
)

3

+ (3 +
369√5

275
) (

3 − √5

2
)

3

=
18

55
𝐴 

(42) 

 

𝐼4 = (3 −
369√5

275
) (

3 + √5

2
)

4

+ (3 +
369√5

275
) (

3 − √5

2
)

4

=
6

55
𝐴 

(43) 

2.1.1. Efficiency Comparison with Mesh Analysis 

To evaluate the efficiency of the method, both difference equation and traditional mesh analysis 

were applied to solve uniform 4-mesh, 5-mesh, and up to 7-mesh DC ladder circuits. While this 

paper presents the full derivation only for the 4-mesh case using difference equations, mesh 

analysis was also applied to each configuration for comparison in terms of computational effort 

and equation count, as shown in Table 1. The focus is to show the scaling of each method with 

increasing circuit size. 

Table 1. Equation count for increasing mesh 
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Configuration No. of Equations (Mesh 

Analysis) 

No. of Equations (Difference 

Equation) 

4-Mesh 17 25 

5-Mesh 22 17 

6-Mesh 27 19 

7-Mesh 32 21 

In this context, we define complexity as the total number of symbolic equations to be solved, 

which represents the algebraic workload associated with modelling and solving the circuit. 

Compared to mesh analysis, which grows by five equations per added mesh, the difference 

equation method increases by only two, using a fixed recursive structure with adjustable 

boundary conditions. Initially, the 4-mesh configurations needed 25 equations from the full 

derivation, but once the recurrence relation was established, it could be applied to higher mesh 

sizes, ultimately reducing the total number to 17 for the 5-mesh case, increasing thereafter by 

only two equations. From higher-mesh configuration onward, it yields a significantly lower 

total equation count, thus making it more efficient and suited for large or infinite ladder circuits. 

As discussed by Green (2024) and Salehizadeh & Nouri (2020), varying initial conditions 

within the fixed recurrence structure reduces algebraic effort and supports a scalable modelling 

strategy for larger systems. 

2.2. Solving RL Circuit Using Difference Equation 

The circuit shown in Figure 2 represents a basic RL circuit driven by a time-varying voltage 

source V(t), with a resistor of R = 2 Ω, an inductor of L = 1 H, an initial condition of current = 

0, a time step of 0.01 s, and a unit step input V(k) = 1. 
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Figure 2. A simple RL circuit 

The values 𝑅 =  2 𝛺 and 𝐿 =  1 𝐻 were chosen to reflect realistic inductive load scenarios 

such as electromagnetic relays or switching transformers. These values allow the model to 

emulate slow current rise conditions found in practical DC applications, such as motor start-up 

behaviour and inrush current limiting.  

To formulate the dynamic behaviour of the circuit, Kirchhoff’s Voltage Law (KVL) is applied: 

 𝑉(𝑡) = 𝑉𝑅(𝑡) + 𝑉𝐿(𝑡) (44) 

The voltage drops across the resistor and inductor is expressed as: 

 
𝑉(𝑡) = 𝑅𝑖(𝑡) + 𝐿

𝑑𝑖(𝑡)

𝑑𝑡
 

(45) 

This equation represents a first-order linear differential equation. To analyse this in a discrete-

time simulation, it is converted into a difference equation. 

Let the time domain be discretized into small steps of width Δt and define 𝑡 = 𝑘𝛥𝑡, where 𝑘 =

0,1, 2, 3, . . . , 𝑁. The derivative is approximated using a backward difference method: 

 𝑑𝑖(𝑡)

𝑑𝑡
≈  

𝑖(𝑘 + 1) − 𝑖(𝑘)

Δt
 

(46) 

Substitute this into: 

 
𝑉(𝑡) = 𝑅𝑖(𝑡) + 𝐿

𝑖(𝑘 + 1) − 𝑖(𝑘)

Δt
 

(47) 

Rearranging to solve for i(k+1): 

 
𝑖(𝑘 + 1) = (1 −

𝑅Δt

𝐿
)𝑖(𝑘) +

Δt

L
𝑉(𝑘) 

(48) 

This is the first-order difference equation describing the RL circuit. 

Substituting the values:  

 
𝑖(𝑘 + 1) = (1 −

2(0.01)

1
)𝑖(𝑘) +

0.01

1
𝑉(𝑘) 

(49) 
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 𝑖(𝑘 + 1) = 0.98𝑖(𝑘) + 0.01𝑉(𝑘) (50) 

Solving for discrete currents by substituting k = 0, 1, 2, 3, … N. 

 𝑖(0 + 1) = 0.98𝑖(0) + 0.01𝑉(0) (51) 

 𝑖(1) = 0.98(0) + 0.01(1) (52) 

 𝑖(1) = 0.01 𝐴 (53) 

 𝑖(1 + 1) = 0.98𝑖(1) + 0.01𝑉(1) (54) 

 𝑖(2) = 0.98(0.01) + 0.01(1) (55) 

 𝑖(2) = 0.0198 𝐴 (56) 

 𝑖(2 + 1) = 0.98𝑖(2) + 0.01𝑉(2) (57) 

 𝑖(3) = 0.98(0.0198) + 0.01(1) (58) 

 𝑖(3) = 0.029404 𝐴 (59) 

 𝑖(3 + 1) = 0.98𝑖(3) + 0.01𝑉(3) (60) 

 𝑖(4) = 0.98(0.029404) + 0.01(1) (61) 

 𝑖(4) = 0.03881592 𝐴 (62) 

Checking the differences between each step: 

 i(1)  −  i(0)  =  0.01 − 0 = 0.01 (63) 

 i(2) −  i(1) =  0.0198 − 0.01 = 0.0098 (64) 

 i(3) −  i(2) =  0.029404 − 0.0198

= 0.009604 

(65) 

 i(4) −  i(3) =  0.03881592 − 0.029404

= 0.0941192 

(66) 
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To illustrate the transient response of the RL circuit, the current values computed from the first-

order difference equation were plotted over time. As shown in Figure 3, the graph represents 

the gradual increase in current where the inductor initially resists dramatic changes until the 

system stabilizes because of the constant step input. 

 

 

Figure 3. Time response of current in an RL circuit using difference equation 

2.3. Solving RLC Circuit Using Difference Equation 

The circuit shown in Figure 4 represents a second-order RLC circuit driven by a time-varying 

voltage source V(t), with a resistor of 𝑅 =  2 𝛺, an inductor of 𝐿 =  1 𝐻, and a capacitor of 

𝐶 =  0.01 𝐹 . The initial conditions are set to zero current 𝑖(0)  =  0 and zero past current 

𝑖(−1)  =  0, with a time step of 𝛥𝑡 =  0.0001 𝑠 and a unit step input 𝑉(𝑘)  =  1. 

 

Figure 4. A simple RLC circuit 

By choosing 𝑅 =  2 𝛺, 𝐿 =  1 𝐻, and 𝐶 =  0.01 𝐹, the circuit is very similar to real-world 

filter circuits and tuned resonant systems. This arrangement makes it possible to analyse 

damped oscillations, which are also observed in power electronics and communication filters. 
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To analyse the transient behaviour of the circuit, we apply Kirchhoff’s Voltage Law (KVL): 

 𝑉(𝑡) = 𝑉𝑅(𝑡) + 𝑉𝐿(𝑡) + 𝑉𝐶(𝑡) (67) 

The voltage across each component is expressed as: 

 
𝑉(𝑡) = 𝑅𝑖(𝑡) + 𝐿

𝑑𝑖(𝑡)

𝑑𝑡
+

1

𝐶
∫ 𝑖(𝑡)𝑑𝑡 

(68) 

Differentiating both sides gives: 

 𝑑𝑉

𝑑𝑡
= 𝑅

𝑑𝑖

𝑑𝑡
+ 𝐿

𝑑2𝑖

𝑑𝑡2
+

𝑖(𝑡)

𝐶
 

(69) 

This leads to the second-order linear differential equation: 

 𝑑𝑉

𝑑𝑡
= 𝐿

𝑑2𝑖

𝑑𝑡2
+ 𝑅

𝑑𝑖

𝑑𝑡
+

1

𝐶
𝑖(𝑡) 

(70) 

To analyse this in discrete time, we convert it into a difference equation. Using the backward 

difference approximations: 

 𝑑𝑖(𝑡)

𝑑𝑡
≈  

𝑖(𝑘) − 𝑖(𝑘 − 1)

Δt
 

(71) 

 𝑑2𝑖

𝑑𝑡2
≈  

𝑖(𝑘 + 1) − 2𝑖(𝑘) + 𝑖(𝑘 − 1)

Δt2
 

(72) 

Substitute into the differential equation: 

 𝑉(𝑘) − 𝑉(𝑘 − 1)

Δt
= 𝐿

𝑖(𝑘 + 1) − 2𝑖(𝑘) + 𝑖(𝑘 − 1)

Δt2
+ 𝑅

𝑖(𝑘) − 𝑖(𝑘 − 1)

Δt
+

1

𝐶
𝑖(𝑘) 

(73) 

Multiply through by Δt2 to eliminate denominators: 

[𝑉(𝑘) − 𝑉(𝑘 − 1)]Δt = 𝐿[𝑖(𝑘 + 1) − 2𝑖(𝑘) + 𝑖(𝑘 − 1)] + 𝑅[𝑖(𝑘) − 𝑖(𝑘 − 1)]Δt +
Δt2

𝐶
𝑖(𝑘) 

Simplifying and grouping like terms: 

[𝑉(𝑘) − 𝑉(𝑘 − 1)]Δ = 𝐿𝑖(𝑘 + 1) − 2𝐿𝑖(𝑘) + 𝐿𝑖(𝑘 − 1) + 𝑅[𝑖(𝑘) − 𝑖(𝑘 − 1)]Δt +
Δt2

𝐶
𝑖(𝑘) 
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𝐿𝑖(𝑘 + 1) = [𝑉(𝑘) − 𝑉(𝑘 − 1)]Δt + [2𝐿 − 𝑅Δt +
Δt2

𝐶
] 𝑖(𝑘) − (𝐿 − 𝑅Δt)i(k − 1) 

Substituting the given values: 

L = 1 H, R = 2 Ω, C = 0.01 F, and Δt = 0.0001 

This simplifies to: 

𝑖(𝑘 + 1) = [𝑉(𝑘) − 𝑉(𝑘 − 1)]0.0001 + [2(1) − 2(0.0001) +
(0.0001)2

0.01
] 𝑖(𝑘) − [1

− 2(0.0001)]i(k − 1) 

𝑖(𝑘 + 1) = [𝑉(𝑘) − 𝑉(𝑘 − 1)]0.0001 + (1.99801)𝑖(𝑘) − (0.9998)i(k − 1) 

Since the input is a unit step: 

𝑉(𝑘) = 1, 𝑉(𝑘) ≥  0 → 𝑉(𝑘) − 𝑉(𝑘 − 1) =  {
1, 𝑘 = 0
0, 𝑘 ≥ 1

 

Solving for discrete currents by substituting k = 0, 1, 2, … N. 

 𝑖(0 + 1) = [𝑉(0) − 𝑉(0 − 1)]0.0001 + (1.99801)𝑖(0)

− (0.9998)i(0 − 1) 

(74) 

 𝑖(1) = 1 + (1.99801)(0) − (0.9998)(0) (75) 

 𝑖(1) = 0.0002 A (76) 

 𝑖(1 + 1) = [𝑉(1) − 𝑉(1 − 1)]0.0001 + (1.99801)𝑖(1)

− (0.9998)i(1 − 1) 

(77) 

 𝑖(2) = 0 + (1.99801)(0.0002) − (0.9998)(0) (78) 

 𝑖(2) = 0.000399602 A (79) 

 𝑖(2 + 1) = [𝑉(2) − 𝑉(2 − 1)]0.0001 + (1.99801)𝑖(2)

− (0.9998)i(2 − 1) 

(80) 

 𝑖(3) = 0 + (1.99801)(0.000399602) − (0.9998)(0.0002) (81) 

 𝑖(3) = 0.00059844879 A (82) 
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 𝑖(3 + 1) = [𝑉(3) − 𝑉(3 − 1)]0.0001 + (1.99801)𝑖(3)

− (0.9998)i(3 − 1) 

(83) 

 𝑖(4) = 0 + (1.99801)(0.00059844879) − (0.9998)(0.000399602) (84) 

 𝑖(4) = 0.00079618459 A (85) 

Looking at the differences between each step: 

 i(1)  −  i(0)  =  0.0002 − 0 = 0.0002 (86) 

 i(2) −  i(1) =  0.000399602 − 0.0002 = 0.000199602 (87) 

 i(3) −  i(2) =  0.00059844879 − 0.000399602

= 0.00019884679 

(88) 

 i(4) −  i(3) =  0.00079618459 − 0.00059844879

= 0.0001977358 

(89) 

The current response of the RLC circuit was plotted based on the second-order difference 

equation (Figure 5). 

 

Figure 5. Transient current response in an RLC circuit using difference equation 

The graph shows a continuous increase in current with oscillations, reflecting the transient 

behaviour of the circuit. The inductor resists rapid changes in current, the capacitor stores 

energy, and the resistor dissipates energy, all of which lead to a steady state. 

3. Results and Discussion 
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Analyzing three distinct circuits using difference equation includes a 4-mesh DC circuit, an RL 

circuit, and an RLC circuit. The approach uses initial conditions and recurrence relations to 

compute as illustrated by Salehizadeh & Nouri (2020). The difference equation method is 

simpler as opposed to the traditional mesh analysis method that uses simultaneous equations 

(Testbook, 2025). The values of current were provided using characteristic equations in closed 

form to obtain general solutions (Stevic, 2024). 

When stable currents were obtained through the mesh circuit, they fall within the theoretical 

mesh analysis. As the circuit was switched into the RL circuit, the current exhibited smooth 

increase as the inductor does not like sudden changes and stabilizes when there is constant 

input. There was damped oscillation of the RLC circuit which came to rest at the steady-state 

because of the interaction of the inductor and the capacitor. The different initial conditions 

presented by Green (2024) are a demonstration of how difference equations do not require the 

laborious algebraic work as well as they scale in complicated systems. 

Applied in practice the technique is useful in modifying the resonant frequency of RLC filters 

used in communication systems and in examining the transients in power electronic systems 

using the second order difference equations. Its effectiveness will favor more realistic modeling 

and configuration of circuits on digital platforms. 

The ladder, RL, and RLC circuits all demonstrate stable and convergent behaviour. A second-

order recurrence relation is solved for the ladder circuit through a characteristic equation, with 

the resulting mesh currents converging as expected through the four meshes. The first-order 

difference equation model for the RL circuit with α = 0.98 approaches steady state gradually, 

while the RLC circuit remains stable since the roots of its characteristic equation fall inside the 

unit circle. Small numerical errors from the backward difference approximation are negligible 

on the grounds of chosen time steps to maintain accuracy and stability throughout all of the 

simulations. 

4. Conclusion 

This paper has shown how the dynamic behaviour of an electrical circuit is well represented by 

using difference equations and how the following circuits, a 4-mesh DC ladder, an RL circuit 

and an RLC circuit can be modelled. When step inputs of unit strength were applied, the 

responses were consistent with the expected theoretical responses of steady-state current flows 

in the mesh circuit appropriate to resistive sensor arrays and voltage dividers; smooth transitions 

in steady-state with the RL circuit reflecting real world inductive loads, such as starting motors 
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and relays; and damped oscillations in the RLC circuit applicable to resonant filters and power 

conversion. Analysis of different methods of efficiency indicated that although the 4-mesh 

system needed 25 equations, the recurrence relations form yielded fewer equations with larger 

mesh systems, growing only two per additional mesh-as compared to the traditional form of 

solving mesh analysis which has five more equations per extra mesh-that it could be scaled 

more easily and be applied to more ladder networks of a larger or even infinite size. The above 

findings indicate the usefulness of difference equations in modelling and designing the 

contemporary electrical systems. Future works include to apply difference equations to 

complex circuits, which are computationally intensive when using conventional methods like 

mesh analysis; this approach may provide an effective solution; and focus on the application of 

difference equation to AC circuit analysis, transient phenomena in operational systems, and 

digital control of electronic power.  
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