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Highlights: 

• The ADI method efficiently solves 2D heat conduction problems with high accuracy 

• Increasing grid resolution reduces numerical errors but increases computational cost 

• MATLAB implementation of ADI demonstrates its practical applicability in thermal engineering 

 

Abstract: The heat equation is widely used in engineering applications to predict temperature 

distribution in materials subjected to heating or cooling, such as in high-temperature furnaces 

and pipeline-based heat networks. This study applies the alternating direction implicit (ADI) 

method to solve a two-dimensional heat conduction problem and evaluates its accuracy through 

grid convergence and error analysis. Results indicate that finer grid resolutions improve 

numerical accuracy, with absolute errors decreasing from 15.523 (for a grid size of 110) to 

0.493 (for a grid size of 190) at the centre of the plate. Computational efficiency analysis reveals 

a trade-off, as execution times increase from 0.089907s to 0.432780s for the same grid 

refinements. These findings confirm the ADI method’s reliability for thermal simulations, 

offering a balanced approach between precision and computational cost. The study concludes 

that the ADI method is a robust and efficient tool for modelling heat conduction in engineering 

applications. 
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1. Introduction 

The heat equation is extensively utilized in engineering applications, particularly for predicting 

temperature distribution when solid materials undergo heating or cooling in high-temperature 

furnaces (Norzilah & Nursalasawati, 2019). Moreover, heat conduction plays a crucial role in 

applications that demand efficient thermal energy transfer, such as pipeline-based heat 

networks that distribute heat from a source to end users for residential and domestic purposes. 

Solving heat conduction problems analytically can be complex, particularly for materials like 

alpha-beta titanium alloy (Ti6Al4V), which are challenging to machine. Computational 

techniques utilizing numerical methods provide an effective approach for analysing such 

problems with high accuracy and efficiency. While one-dimensional heat conduction problems 

are relatively simpler to solve analytically, two-dimensional and three-dimensional cases 

present significantly greater challenges (Roy & Kumar, 2021). 

The integration of MATLAB, Python, and parallel computing has significantly improved the 

efficiency of solving high-resolution heat transfer problems in recent years. Idoko et al. (2024) 

examined the application of MATLAB, COMSOL, and Python in mathematical modelling and 

simulation within precision engineering, highlighting their strengths in handling various 

engineering challenges, including Multiphysics simulations and custom algorithm 

development. This study builds upon these modern approaches by providing an optimized and 

validated implementation of the ADI method, demonstrating its effectiveness for 

computational heat transfer modelling. 

This study conducts a detailed numerical analysis of the two-dimensional heat conduction 

problem on a flat plate with constant thermal diffusivity, employing the alternating direction 

implicit (ADI) method in MATLAB. The novelty of this research lies in several key aspects. 

First, a grid convergence analysis was performed to systematically evaluate the accuracy of the 

solution across different grid resolutions, ensuring both numerical stability and efficiency. 

Specifically, an error analysis was conducted by comparing ADI results from different grid 

sizes with analytical solutions to quantify any numerical discrepancies. Computational 

performance was also assessed through a computational time analysis, measuring the efficiency 

of the ADI method. 

Various numerical techniques have been applied to solve the two-dimensional heat equation, 

each with distinct advantages and limitations. The finite difference method, though simple to 

implement, requires small time steps for stability in its explicit form, making it computationally 



Aprecio et al.  JETA 2024, 10 (2) 96 - 114 
 

98 
 

expensive (Smith, 1985). The Crank-Nicolson method, a fully implicit approach, is known for 

its accuracy but demands significant computational resources due to the need to solve large 

systems of equations. In contrast, the ADI method, which is utilized in this study, offers 

unconditional stability, improved computational efficiency, and lower memory requirements 

by breaking the solution process into alternating implicit steps (Peaceman & Rachford, 1955). 

1.1. Partial Differential Equations 

A partial differential equation (PDE) is a mathematical equation that involves multiple 

independent variables, the function itself, and its partial derivatives. The standard form of a 

PDE is expressed as:  

𝐹(𝑥, 𝑦, 𝑢(𝑥, 𝑦), 𝑢𝑥(𝑥, 𝑦), 𝑢𝑦(𝑥, 𝑦), 𝑢𝑥𝑥(𝑥, 𝑦), 𝑢𝑥𝑦(𝑥, 𝑦), 𝑢𝑦𝑥(𝑥, 𝑦), 𝑢𝑦𝑦(𝑥, 𝑦) = 0            (1) 

This formula represents a second-order PDE. Solving this type of equation involves finding a 

function 𝑢(𝑥, 𝑦)  that satisfies the equation across all valid inputs, including its derivatives. In 

scenarios involving ordinary differential equations (ODEs), the function 𝑢  can be a vector, 

such as 𝑢(𝑥, 𝑦) = (𝑢1(𝑥, 𝑦), 𝑢2(𝑥, 𝑦), … , 𝑢𝑁(𝑥, 𝑦)). This typically results in a system of PDEs 

(Ivrii, 2022). 

1.2. Parabolic Partial Differential Equations 

Consider a general second-order linear PDE with two independent variables, 𝑥 and 𝑦, and one 

dependent variable, 𝑢, represented by the equation: 

                                     𝐴
𝛿2𝑢

𝛿𝑥2 + 𝐵
𝛿2𝑢

𝛿𝑥𝛿𝑦
+ 𝐶

𝛿2𝑢

𝛿𝑦2 + 𝐷 = 0                                  (2) 

where 𝐴, 𝐵, and 𝐶 are functions of 𝑥 and 𝑦, and 𝐷 can be a function of 𝑥, 𝑦, 𝑢, and their first 

derivatives. This equation is classified as parabolic when 𝐵2 − 4𝐴𝐶 = 0. 

1.3. 2D Heat Equation 

The two-dimensional heat equation is a partial differential equation (PDE) that describes the 

distribution of heat (or temperature) in a two-dimensional region over time. It's a fundamental 

equation in physics and engineering, with applications ranging from modelling heat transfer in 

materials to understanding diffusion processes in various systems. The equation itself is derived 

from the principle of conservation of energy, stating that the rate of change of heat energy 

within a region is equal to the net heat flux across its boundaries (Strauss, 2008). 

An illustrative example of a parabolic PDE is the 2D heat conduction equation, expressed as: 
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𝜕𝑢 

𝛿𝑡
=  𝛼(

𝜕²𝑢

𝜕𝑥²
 +  

𝜕²𝑢

𝜕𝑦²
)                                                     (3) 

where 𝑢(𝑥, 𝑦, 𝑡) represents the temperature at point (𝑥, 𝑦) and time  𝑡 and α is the thermal 

diffusivity of the material, a constant that depends on the material's thermal conductivity, 

density, and specific heat capacity. A higher thermal diffusivity indicates faster heat 

propagation. 

The thermal diffusivity, 𝛼, is defined by: 

𝛼 =
𝑘

𝜌𝐶
       (4) 

Here, 𝑘 is the thermal conductivity, 𝜌 is the density, and 𝐶 is the specific heat capacity of the 

material. This model effectively describes the spatial and temporal distribution of heat within 

a metal rod, serving as a practical application of parabolic PDEs in the fields of engineering 

and physics (Kaw & Garapati, 2011). 

The 2D heat equation states that the rate of temperature change at a point is proportional to the 

Laplacian of the temperature at that point. The Laplacian (𝛻²𝑢 =  𝜕²𝑢/𝜕𝑥² +  𝜕²𝑢/𝜕𝑦²) 

represents the second-order spatial derivatives, indicating the curvature of the temperature 

field. A positive Laplacian suggests a region of relatively lower temperature surrounded by 

higher temperatures, leading to an increase in temperature over time. Conversely, a negative 

Laplacian signifies a region of higher temperature surrounded by lower temperatures, resulting 

in a decrease in temperature (Özişik, 2017). 

The two-dimensional heat equation is a cornerstone in mathematical physics and engineering, 

widely used to model heat conduction in planar and semi-planar domains. This equation, 

classified as a parabolic partial differential equation, describes how heat energy disperses over 

time in a medium with spatial dimensions, making it essential for analysing processes involving 

thermal conductivity, such as in metals, semiconductors, and even biological tissues (Crank, 

1984). Its importance lies not only in its theoretical foundation but also in its applications across 

various fields like material science, thermodynamics, and environmental studies (Incropera et 

al., 2007). 

The 2D heat equation assumes that the heat flow is governed by Fourier's law, stating that the 

rate of heat transfer is proportional to the negative gradient of the temperature. This 

proportionality ensures that heat diffuses from regions of higher temperature to regions of 

lower temperature, leading to equilibrium over time (Carslaw & Jaeger, 1959). Practical 
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solutions to the equation often involve initial conditions and boundary conditions tailored to 

specific scenarios, such as Dirichlet or Neumann conditions. These conditions reflect the nature 

of heat sources, insulation, or environmental influences on the material boundaries (Reddy, 

2005). 

From an engineering perspective, numerical methods like the finite difference method (FDM), 

finite element method (FEM), and alternating direction implicit (ADI) scheme have proven 

invaluable in solving the 2D heat equation. These techniques discretize the spatial and temporal 

domains into manageable grids, enabling approximate solutions for complex geometries where 

analytical methods are infeasible (Smith, 1985). Numerical approaches are particularly useful 

for simulations in irregular domains, as seen in aerospace engineering for evaluating thermal 

stress on aircraft structures (Patankar, 1980). 

In modern applications, the 2D heat equation has been instrumental in simulating and 

optimizing thermal processes, such as in the design of heat exchangers and thermal barrier 

coatings. It is also pivotal in environmental science, modelling the dispersion of heat in oceans 

and the soil's surface layer (Zienkiewicz et al., 2005). Beyond physical systems, it has inspired 

analogous models in financial mathematics and image processing, demonstrating its 

interdisciplinary relevance (Strikwerda, 2004). 

The relevance of the 2D heat equation extends into current research, where scientists 

investigate the effects of variable thermal conductivity and anisotropic materials. These studies 

are critical for next-generation technologies like flexible electronics and nanomaterials (Cheng 

& Cheng, 2005). Moreover, integrating the heat equation with computational tools like 

MATLAB and Python has revolutionized its accessibility, enabling researchers and engineers 

to model and analyse thermal systems with unprecedented efficiency (Mathews & Fink, 2004). 

1.4. Alternating Direction Implicit Method 

The alternating direction implicit method is a widely used iterative technique in numerical 

linear algebra for solving Sylvester matrix equations. It is particularly favoured for addressing 

large matrix problems encountered in systems theory and control. ADI can be structured to 

generate solutions efficiently, often in a compact form that conserves memory. Its versatility 

extends to solving parabolic and elliptic partial differential equations numerically, making it a 

staple for modelling heat conduction and solving diffusion equations across multiple 

dimensions. This method falls under operator splitting methods, showcasing its adaptability 

across various computational challenges. 
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The ADI method is a two-step iterative process for updating an approximate solution to the 

equation 𝐴𝑋 − 𝑋𝐵 = 𝐶 (Wachspress, 2008). One iteration works as follows: 

1. Solve for 𝑋(𝑗+
1

2
)
 using the equation (𝐴 + 𝛽𝑗+1𝐼)𝑋(𝑗+

1

2
) = 𝑋(𝑗)(𝛽 − 𝛽𝐽+1𝐼) + 𝐶. 

2. Solve for 𝑋(𝑗+1) using the equation 𝑋(𝑗+1)(𝛽 − 𝛼𝐽+1𝐼) = (𝐴 − 𝛼𝑗+1𝐼)𝑋(𝑗+
1

2
) − 𝐶. 

The convergence of ADI heavily depends on choosing suitable shift parameters 

(𝛼𝑗+1, 𝛽𝑗+1) (Lu & Wachspress, 1991; Beckermann & Townsend, 2017). To perform 𝐾 

iterations of ADI, an initial guess 𝑋(0) and sets of shift parameters (𝛼𝑗 , 𝛽𝑗)
𝑗=1

𝐾
 are needed. 

Originally, the ADI method was designed to tackle the 2D diffusion equation on a square 

domain through finite differences (Peaceman & Rachford, 1955). Unlike ADI applied to matrix 

equations, the version used for parabolic equations does not need shift parameters chosen 

upfront. Instead, the shift in each iteration is determined by factors like the timestep, diffusion 

coefficient, and grid spacing. The link to ADI for matrix equations becomes evident when 

examining how the ADI iteration affects the system during steady-state conditions. 

The standard approach for numerically solving the heat conduction equation is through the 

Crank-Nicolson method. However, this method leads to complex equations in multiple 

dimensions that are time-consuming to solve. In contrast, the ADI method offers an advantage 

because the equations encountered in each step have a simpler structure, making them 

amenable to efficient solution using the tridiagonal matrix algorithm. 

The ADI method is based on the concept of splitting finite difference equations into two parts: 

one where the x-derivative is treated implicitly, and the other where the y-derivative is treated 

implicitly. 

𝑢
𝑖𝑗

𝑛+
1
2−𝑢𝑖𝑗

𝑛

Δ
𝑡

2

=
(𝛿𝑥

2𝑢
𝑖𝑗

𝑛+
1
2+𝛿𝑦

2𝑢𝑖𝑗
𝑛 )

Δ𝑥2
           (5) 

𝑢𝑖𝑗
𝑛+1−𝑢

𝑖𝑗

𝑛+
1
2

Δ
𝑡

2

=
(𝛿𝑥

2𝑢
𝑖𝑗

𝑛+
1
2+𝛿𝑦

2𝑢𝑖𝑗
𝑛+1)

Δ𝑦2          (6) 

The system of equations in the ADI method is symmetric and tridiagonal, with a bandwidth of 

3, making it suitable for solving using the tridiagonal matrix algorithm. It has been 

demonstrated that this method is unconditionally stable and achieves second-order accuracy in 

both time and space.  
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1.5. Problem Statement 

A solid square plate has an initial temperature of 50 °𝐶. The edges of the plate are maintained 

at a constant temperature of 0 °𝐶 , as shown in Figure 1. The thermal conductivity of the 

material is 50 
𝑊

𝑚 𝐾
 , the density is 1500 

𝑘𝑔

𝑚3 , and the specific heat capacity is 0.1333 
𝐽

𝑘𝑔 𝐾
.  The 

objective is to determine the temperature distribution within the plate after 10 seconds. 

Figure 1. Schematic diagram of the problem 

2. Methodology 

2.1. Thermal Diffusivity 

The thermal diffusivity is an important value in the 2D heat equation. To calculate it, Equation 

4 was used. Given a thermal conductivity of 𝑘 = 50 
𝑊

𝑚 𝐾
; a density of 𝜌 = 1500

𝑘𝑔

𝑚3; and a 

specific heat capacity 𝑐 = 0.1333 
𝐽

𝑘𝑔 𝐾
, the aforementioned values were substituted into 

Equation (4) 

𝛼 =
50 

𝑊

𝑚 𝐾

1500
𝑘𝑔

𝑚3∙0.1333 
𝐽

𝑘𝑔 𝐾

         (7) 

Equation 7 can be further simplified to: 



Aprecio et al.  JETA 2024, 10 (2) 96 - 114 
 

103 
 

𝛼 = 0.25 
𝑚2

𝑠
         (8) 

Equation 8 is the obtained thermal diffusivity which was used to solve the 2D heat equation. 

2.2. The Analytical Solution via Separation of Variables 

The governing equation is the 2D heat equation is given in Equation 9: 

𝜕𝑇/𝜕𝑡 = 𝛼(𝜕2𝑇/𝜕𝑥2 + 𝜕2𝑇/𝜕𝑦2)                                      (9) 

To solve this equation using the separation of variables method, we assume that the 

temperature function can be expressed as the product of separate functions of 𝑥, 𝑦, and 𝑡. 

𝑇(𝑥, 𝑦, 𝑡) = 𝑋(𝑥)𝑌(𝑦)𝑇(𝑡)                                       (10) 

Substituting into Equation 9: 

𝛼 ((1/𝑋(𝑥))(𝑑2𝑋(𝑥)/𝑑𝑥2) + (1/𝑌(𝑦))(𝑑2𝑌(𝑦)/𝑑𝑦2)) = (1/𝑇(𝑡))(𝑑𝑇(𝑡)/𝑑𝑡)   (11) 

Since the left-hand side depends only on 𝑥, 𝑦 and the right-hand side depends only on 𝑡, both 

sides must be equal to a constant, −λ. 

𝑑𝑇/𝑑𝑡 +  𝜆𝑇 =  0                                            (12) 

For the spatial components: 

(1/𝑋(𝑥))(𝑑2𝑋(𝑥)/𝑑𝑥2) + (1/𝑌(𝑦))(𝑑2𝑌(𝑦)/𝑑𝑦2) = −𝜆/𝛼        (13) 

Rearranging: 

𝑑𝑇/𝑑𝑡 =  −𝜆𝑇                                               (14) 

Separating variables and integrating: 

∫  (𝑑𝑇/𝑇)  =  −𝜆 ∫  𝑑𝑡                                          (15) 

𝑙𝑛 𝑇 =  −𝜆𝑡 +  𝐶                                               (16) 

Exponentiating both sides: 

𝑇(𝑡)  =  𝐶 𝑒^(−𝜆𝑡)                                                    (17) 

Since the solution should remain bounded: 

𝑇(𝑡)  =  𝐴_𝑛 𝑒^(−𝜆_𝑛 𝑡)                                                (18) 

Rearranging: 
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𝑑²𝑋(𝑥)/𝑑𝑥² +  𝑘² 𝑋(𝑥)  =  0                                             (19) 

where 𝑘2 = 𝜆/𝛼. The general solution is: 

𝑋(𝑥)  =  𝐶₁ 𝑐𝑜𝑠(𝑘𝑥)  +  𝐶₂ 𝑠𝑖𝑛(𝑘𝑥)                                          (20) 

Applying boundary conditions at 𝑥 = 0 and 𝑥 = 𝐿: 

𝑋(0)  =  0 ⇒  𝐶₁ =  0                                                    (21) 

𝑋(𝐿)  =  0  ⇒  𝑠𝑖𝑛(𝑘𝐿)  =  0  ⇒  𝑘𝑛  =  (𝑛π)/𝐿,  where 𝑛 = 1,2,3, . ..: 

𝑋𝑛(𝑥)  =  𝑠𝑖𝑛( (𝑛π𝑥)/𝐿 )                                                    (22) 

Similarly, solving for 𝑌(𝑦): 

𝑌𝑛(𝑦) = 𝑠𝑖𝑛((𝑛𝜋𝑦)/𝐿)                                                    (23) 

The full solution is: 

𝑇(𝑥, 𝑦, 𝑡) = 𝛴𝑛=1
∞ 𝐴𝑛𝑠𝑖𝑛((𝑛𝜋𝑥)/𝐿)𝑠𝑖𝑛((𝑛𝜋𝑦)/𝐿)𝑒(−((𝑛𝜋)/𝐿)

2
𝛼𝑡)

               (24) 

Using the initial condition 𝑇(𝑥, 𝑦, 0) = 50°𝐶: 

50 = 𝛴𝑛=1
∞ 𝐴𝑛𝑠𝑖𝑛((𝑛𝜋𝑥)/𝐿)𝑠𝑖𝑛((𝑛𝜋𝑦)/𝐿)                                  (25) 

Multiplying both sides by 𝑠𝑖𝑛( (𝑚𝜋𝑦)/𝐿 ) and integrating: 

𝐴𝑛 = (4/𝐿2) ∫ ∫ 50
𝐿

0
𝑠𝑖𝑛((𝑛𝜋𝑥)/𝐿)𝑠𝑖𝑛((𝑛𝜋𝑦)/𝐿)𝑑𝑥

𝐿

0
𝑑𝑦                        (26) 

Computing the integral: 

𝐴𝑛 = (4 × 50)/𝐿2                                                      (27) 

Substituting 𝐿 = 5: 

𝐴𝑛 = (4 × 50)/52 = 8                                                (28) 

Thus, the final solution is: 

𝑇(𝑥, 𝑦, 𝑡) = 𝛴𝑛=1
∞ 8𝑠𝑖𝑛((𝑛𝜋𝑥)/5)𝑠𝑖𝑛((𝑛𝜋𝑦)/5)𝑒(−((𝑛𝜋)/5)

2
𝛼𝑡)

                (29) 

where 𝛼 = 0.25 𝑚2

𝑠⁄ . 
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2.3. MATLAB 

To solve the given problem involving 2D heat diffusion equation, the ADI method is 

implemented using MATLAB. The flowchart of MATLAB coding is shown in Figure 2. 

Figure 2. Flowchart of MATLAB coding 

MATLAB is first used to define the physical and simulation parameters necessary for the 

model. This includes the dimensions of the plate, the number of grid points for the spatial 

discretization, the time step for the simulation, and the thermal diffusivity of the material. These 

parameters are crucial for setting up the simulation environment and ensuring that the 

numerical solution is accurate and stable. 

The initial temperature distribution across the plate is set up in MATLAB using matrix 

operations. MATLAB’s efficient handling of matrices makes it ideal for setting up the initial 

conditions and applying boundary conditions. The temperature matrix is initialized, and 

boundary conditions are applied to simulate the physical constraints of the problem. 

MATLAB’s core strength in numerical analysis is leveraged to implement the ADI method, a 

numerical method used to solve partial differential equations like the heat equation. The ADI 

method is particularly suited for problems like this because it is stable and efficient for 
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multidimensional problems. MATLAB is used to construct and solve the tridiagonal matrix 

equations that arise in the ADI method, updating the temperature distribution at each time step. 

After computing the temperature distribution, MATLAB is also used to visualize the results. 

The meshgrid and surf functions are employed to create a 3D surface plot of the temperature 

distribution over the plate. This visualization is crucial for analysing the behaviour of the heat 

distribution over time and can be used to verify the correctness of the numerical solution and 

to present the results in a visually appealing format. 

2.4. The Coding Process 

Below is the detailed discussion of the coding process. 

2.4.1. Initialization of Parameters 

L, N, dx, dt, alpha, total time. These lines define the simulation's physical and computational 

parameters. L is the plate's length, N is the number of grid points per dimension, dx is the 

distance between grid points, dt is the time step, alpha is the thermal diffusivity, and total time 

is the duration of the simulation. 

2.4.2. Temperature Matrix Initialization 

T. Initializes the temperature matrix with a uniform initial temperature of 50° 𝐶, except at the 

boundaries where the temperature is set to 0° 𝐶 due to the specified boundary conditions. 

2.4.3. ADI Method Parameters 

a, b. These coefficients are used in the tridiagonal matrix setup for the ADI method, where a is 

the diagonal element and b is the off-diagonal element, adjusted for the thermal diffusivity and 

grid spacing. 

2.4.4. Time-Stepping Loop 

The loop represents the time evolution of the temperature distribution. It uses two nested loops 

to apply the ADI method alternately in the x and y directions. Each iteration updates the 

temperature matrix T. 

2.4.5. 3D Visualization 

Meshgrid and Surface Plot. The meshgrid function generates matrices X and Y that correspond 

to the coordinates of the plate. The surf function then plots these coordinates against the 

temperature matrix T, resulting in a 3D surface plot. The plot is enhanced with labels and a 

colour bar to indicate temperature values. 
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2.5. Error Analysis 

This was performed to determine the accuracy of the ADI method relative to the analytical 

solution. Equation K was used to determine the absolute error. 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = | 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 −  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 |     (30) 

Here, the true value is represented by the value obtained from the analytical solution while the 

measured value is the value obtained by the numerical solution via ADI method. 

3. Results and Discussion 

Figure 3 illustrates the temperature distribution of the given problem after 10 seconds with 

respect to the initial and boundary conditions.   

 

Figure 3. 3D temperature distribution using alternating direction implicit 

The x-axis and y-axis both represent spatial dimensions measured in meters (𝑚). On the other 

hand, the z-axis represents the temperature. The colour scale on the right side of the plot 

indicates the temperature values, where dark blue represents the lowest temperature and bright 



Aprecio et al.  JETA 2024, 10 (2) 96 - 114 
 

108 
 

yellow represents the highest temperature. The highest temperatures are shown in yellow and 

are located at the centre of the plot, indicating a concentration of heat in this area. The 

temperatures decrease towards the edges of the plot, transitioning through green to dark blue. 

The plot features a bell-shaped surface. At the centre, the graph features a prominent peak, 

corresponding to the highest temperature in the simulation, which gradually decreases when 

away from the centre.  

3.1. Error Analysis 

To determine the accuracy of the obtained results via ADI method, an error analysis was 

performed. Equation 30 was utilized. Temperature at specific 𝑥 and 𝑦 values were obtained 

from the analytical solution and the ADI method at different grid sizes. Afterwards, the 

absolute error was obtained. The analysis is conducted along both the x-direction at 𝑦 = 3 and 

the y-direction at 𝑥 =  2. Additionally, the computational efficiency of different grid sizes was 

assessed. 

The absolute error for different grid sizes was summarized in Table 1. As expected, the error 

decreases as the grid resolution increases. Notably, the largest errors occur at the centre of the 

plate, this is due to a combination of factors. The ADI method introduces a splitting error by 

solving the problem in two half-steps (implicit in the 𝑥 −and−𝑦-directions separately), which 

accumulates more significantly in the centre where the solution is less constrained by boundary 

conditions. Near the boundaries, the solution is strongly influenced by well-defined boundary 

conditions, reducing errors, but at the centre, errors propagate and amplify due to symmetry 

and numerical dispersion. Additionally, the centre experiences slower transient response to 

temperature changes, making it more sensitive to truncation errors arising from spatial and 

temporal discretization. Coarser grids and larger time steps exacerbate these errors, as the 

smooth variations in the centre are not captured accurately. Thus, the combination of error 

accumulation, symmetry, slower diffusion, and discretization limitations leads to higher errors 

in the central region compared to the edges. 
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Table 1. Absolute error analysis at y = 3 along the x-direction 

x (m) 𝑻𝑨𝒏𝒂𝒍𝒚𝒕𝒊𝒄𝒂𝒍 𝑻𝑵=𝟏𝟏𝟎 𝑻𝑵=𝟏𝟑𝟎 𝑻𝑵=𝟏𝟓𝟎 𝑻𝑵=𝟏𝟕𝟎 𝑻𝑵=𝟏𝟗𝟎 

0.5 0.8501 4.2213 2.6872 1.4910 0.6249 0.0378 

1.0 1.6139 7.2610 4.5765 2.4831 0.9675 0.0599 

1.5 2.2134 11.0220 7.0187 3.8969 1.6366 0.1042 

2.0 2.5875 14.2340 9.1464 5.1788 2.3060 0.3582 

2.5 2.6978 15.5230 10.0120 5.7147 2.6029 0.4931 

3.0 2.5875 14.2340 9.1464 5.1788 2.3060 0.3582 

3.5 2.2134 11.0220 7.0187 3.8969 1.6366 0.1042 

4.0 1.6139 7.2610 4.5765 2.4831 0.9675 0.0599 

4.5 0.8501 4.2213 2.6872 1.4910 0.6249 0.0378 

Table 2 presents the range of absolute errors in temperature calculations along the x-direction 

at 𝑦 = 3. As grid size increases, the minimum and maximum errors decrease significantly, 

demonstrating the improvement in numerical accuracy. For instance, at a grid size of 110, the 

maximum error reaches 15.523, whereas at 190, it reduces to 0.493. This trend highlights the 

expected behaviour of the ADI method, where finer spatial discretization minimizes truncation 

and discretization errors. The results confirm that increasing grid resolution enhances 

computational precision, albeit at the cost of increased computational time. 

Similar trends in error behaviour are observed along the y-direction at 𝑥 =  2, as shown in 

Table 3. The largest errors again appear near the centre, reinforcing the observation that 

numerical errors accumulate due to the centrality of the diffusion process in the domain. 
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Table 2. Error range at y = 3 along the x-direction 

Grid Size Min Error Max Error 

110 4.2213 15.523 

130 2.6872 10.012 

150 1.4910 5.715 

170 0.6249 2.603 

190 0.0378 0.493 

 

Table 3. Absolute error analysis at 𝑥 =  2 along the y-direction 

y (m) 𝑻𝑨𝒏𝒂𝒍𝒚𝒕𝒊𝒄𝒂𝒍 𝑻𝑵=𝟏𝟏𝟎 𝑻𝑵=𝟏𝟑𝟎 𝑻𝑵=𝟏𝟓𝟎 𝑻𝑵=𝟏𝟕𝟎 𝑻𝑵=𝟏𝟗𝟎 

0.5 0.8501 4.2213 2.6872 1.4910 0.6249 0.0378 

1.0 1.6139 7.2610 4.5765 2.4831 0.9675 0.0599 

1.5 2.2134 11.0220 7.0187 3.8969 1.6366 0.1042 

2.0 2.5875 14.2340 9.1464 5.1788 2.3060 0.3582 

2.5 2.6978 15.5230 10.0120 5.7147 2.6029 0.4931 

3.0 2.5875 14.2340 9.1464 5.1788 2.3060 0.3582 

3.5 2.2134 11.0220 7.0187 3.8969 1.6366 0.1042 

4.0 1.6139 7.2610 4.5765 2.4831 0.9675 0.0599 

4.5 0.8501 4.2213 2.6872 1.4910 0.6249 0.0378 

Table 4 presents a similar error analysis along the y-direction at 𝑥 = 2. The results align with 

the observations from Table 2, where larger grid sizes lead to smaller errors. The highest error 

at the lowest resolution (grid size 110) is 15.523, which reduces to 0.493 at the finest resolution 

(grid size 190). This consistency in error reduction along both spatial directions indicates the 

robustness of the ADI method. Additionally, the error distribution suggests that numerical 
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discrepancies are more pronounced in the centre of the plate due to the iterative nature of the 

ADI scheme, where errors propagate from boundary conditions inward. 

Table 4. Error range at 𝑥 =  2 along the y-direction 

Grid Size Min Error Max Error 

110 4.2213 15.523 

130 2.6872 10.012 

150 1.4910 5.715 

170 0.6249 2.603 

190 0.0378 0.493 

3.2. Computational Efficiency Analysis 

The execution time for different grid sizes is recorded in Table 5. As expected, finer grids 

result in increased computation times due to the larger number of grid points and the 

corresponding increase in the number of calculations. 

Table 5. Computational efficiency analysis 

Grid Size Execution Time (s) 

110 0.089907 

130 0.140320 

150 0.155160 

170 0.340320 

190 0.432780 

The results indicate that increasing the grid resolution improves accuracy, but at the cost of 

higher computational time. The accumulation of error at the centre of the plate is attributed to 

the numerical diffusion and truncation errors inherent in finite difference approximations. 

Since heat diffuses symmetrically from the boundaries, central points accumulate more 

propagated errors from surrounding nodes. This suggests that adaptive meshing techniques or 
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higher-order numerical schemes may be needed to reduce central error accumulation while 

maintaining computational efficiency. 

The ADI method offers several advantages over other numerical techniques, such as the Crank-

Nicolson and explicit finite difference methods, particularly in solving PDEs like the heat 

conduction equation. One of the primary benefits of the ADI method is its computational 

efficiency. Unlike the Crank-Nicolson method, which requires solving large, banded linear 

systems, the ADI method simplifies these computations by splitting the finite difference 

equations into two stages. In each stage, only one spatial derivative is treated implicitly, 

resulting in systems that are easier and faster to solve using algorithms like the tridiagonal 

matrix algorithm (Peaceman & Rachford, 1955). This reduction in computational complexity 

makes the ADI method particularly suitable for large-scale problems. 

Both the ADI and Crank-Nicolson methods are unconditionally stable and second-order 

accurate in time and space. However, the ADI method's structure allows for more efficient 

computations without compromising stability or accuracy. This efficiency becomes 

increasingly significant as the problem's dimensionality and grid size grow (Saqib et al., 2017). 

Furthermore, Ajeel & Gaftan (2023) observed that the Crank-Nicolson method exhibits higher 

accuracy in the initial time steps, while the ADI method shows improved accuracy in later 

stages. Moreover, the explicit finite difference method is straightforward to implement but 

suffers from conditional stability, necessitating small time steps to maintain accuracy. In 

contrast, the ADI method's unconditional stability permits larger time steps, enhancing 

computational efficiency. Additionally, the ADI method's approach of solving tridiagonal 

systems reduces memory requirements compared to the Crank-Nicolson method, which often 

involves handling larger matrices (Peaceman & Rachford, 1955). 

4.  Conclusion 

The study successfully demonstrated the effectiveness of the ADI method in solving the two-

dimensional heat conduction problem. The numerical results closely align with the analytical 

solution, with errors significantly decreasing as grid resolution improves. The computational 

efficiency analysis confirms that while finer grids yield higher accuracy, they also demand 

increased processing time. These findings affirm the ADI method's utility in thermal 

simulations, making it a reliable choice for engineering applications requiring precise heat 

distribution modelling. For future work, it is recommended to extend the analysis to problems 
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involving variable thermal conductivity and complex geometries, as well as to explore hybrid 

numerical methods that may further improve accuracy and efficiency. 
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