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Highlights: 

• The method of undetermined coefficients requires that 𝐹(𝑥) has functions that have a finite family of 

derivatives  

• Repeated roots in the auxiliary equation require adjusting the trial solution by multiplying by 𝑥  to 

maintain linear independence. 

• The undetermined coefficients can be determined through a series of differentiation and algebra. 

 

Abstract: Higher-order linear differential equations have great significance theoretically and 

practically. This paper solves a third-order linear differential equation with constant coefficients 

by method of undetermined coefficients. Its strengths and limitations were analysed. Analysis 

suggests that the method of undetermined coefficients requires that the inhomogeneous term be 

algebraic, exponential, or sinusoidal functions only. Additionally, if the inhomogeneous term 

is a solution of the differential equation itself, 𝑦𝑝 may yield a linear combination of 𝑦𝑐. In such 

case, the prediction for 𝑦𝑝 will be modified by multiplying the variable 𝑥 however many times 

necessary.  
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1.  Introduction 

Linear differential equations are fundamental mathematical tools used to model various 

phenomena in science, engineering, and other disciplines. They describe relationships between 

a function and its derivatives, where the function and its derivatives are multiplied by 

coefficients that are constants or functions of the independent variable. 
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Linear differential equations are characterized by their linearity, meaning that the dependent 

variable along with its derivatives are present only to the first degree and are not multiplied 

together or divided. This linearity allows for the use of superposition, where the addition of 

any two solutions to a linear differential equation also results in a solution (Boyce & DiPrima, 

2017). This property greatly simplifies the solution process and enables the analysis of complex 

systems (Farlow, 2016). 

Higher-order linear differential equations are a specific type of linear differential equation 

where the highest order derivative is of order 𝑛. These equations are of particular interest as 

they involve more complex relationships between the function and its derivatives. The highest 

order derivative present in a differential equation determines its order (Kreyszig, 2018). 

Differential equations are categorized into partial differential equations (PDE) or ordinary 

differential equations (ODE) based on the presence or absence of partial derivatives. The order 

of a differential equation is determined by the highest order derivative it contains. A solution, 

or particular solution, of a differential equation of order 𝑛  is a function defined and 

differentiable 𝑛 times over a domain 𝐷. This function satisfies the given differential equation 

when substituted along with its 𝑛 derivatives, and this holds true for every point within the 

domain 𝐷 (Differential Equations I MATB44H3F, 2011). 

A solution containing arbitrary constants corresponding to the differential equation's order is 

known as a general solution. On the other hand, a solution devoid of arbitrary constants is 

referred to as a particular solution (Hilbert, 2013). 

Higher-order linear differential equations have great significance theoretically and practically. 

They are typically used in a variety of applications in Science and Engineering (Ross, 2021, p. 

110).  Differential equations find applications in physics, biology, economics, and many other 

disciplines, playing a crucial role in predicting and analysing the behaviour of complex 

phenomena (Strogatz, 2014). 

Most real-world equations are second-order, though higher-order ones do show up now and 

then. This leads to the common belief that the world operates on a "second-order" basis in 

modern physics. Essentially, the key results for higher-order linear ODEs are quite similar to 

those for second-order equations, just with "𝑛" replacing "2" (Lebl, 2013). 

The method of undetermined coefficients is a focal point of this study due to its systematic and 

straightforward approach to solving nonhomogeneous linear differential equations with 

constant coefficients. It is characterized by the fact that its forcing function is a solution of the 
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differential equation itself (Cook & Cook, 2022). It contains unknown constants called the 

undetermined coefficients which will be determined through a series of differentiation and 

algebra (Brauer, 1966; Nagy, 2015).  This method proves highly effective for finding particular 

solutions when the non-homogeneous term is a polynomial, exponential, sine, or cosine 

function, which is frequently encountered in various practical applications. Its simplicity and 

directness ensure accessibility and reliability, providing clear steps and minimizing the 

potential for error compared to more complex techniques. Mastery of this method enables 

efficient handling of a wide range of differential equations, thus significantly enhancing 

problem-solving capabilities. 

1.1.  Research Objectives 

This paper focuses on linear differential equations with constant coefficients, a common type 

of differential equation in various applications. Explicit methods available for solving these 

equations include the method of undetermined coefficients, exponential shift, reduction of 

order, and variation of parameters. Being a relatively simple solution method requiring only 

skills in differentiation and algebra, this paper aims to comprehensively analyse the method of 

undetermined coefficients. More specifically, it aims to:  

1. Utilize the method of undetermined coefficients to solve a third-order linear differential 

equation. 

2. Analyse the strengths, limitations, and versatility of the method of undetermined coefficients 

in solving linear differential equations. 

3.  Determine the family of functions for the inhomogeneous term that can be effectively 

addressed by the method of undetermined coefficients. 

1.2.  Underlying Principles of the Higher-Order Linear Differential Equation 

The general linear equation of nth order can be written  

𝑏𝑜(𝑥)
𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝑏1(𝑥)
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 + ⋯ 𝑏𝑛−1(𝑥)
𝑑𝑦

𝑑𝑥
+ 𝑏𝑛(𝑥)𝑦 = 𝐹(𝑥)                  (1) 

An equation qualifies as a homogeneous linear differential equation when the function 𝐹(𝑥) 

equals zero for all 𝑥 . If 𝐹(𝑥)  is non-zero for any 𝑥 , the equation is considered non-

homogeneous (Rainville & Bedient, 1989). 

If the solutions of Equation 1 are 𝑦1 , 𝑦2, and 𝑦𝑛  and if 𝑐1, 𝑐2, and 𝑐𝑛 are constants, then 

𝑦 = 𝑐1𝑦1 + 𝑐2𝑦2 + ⋯ 𝑐𝑛𝑦𝑛                                              (2) 
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For a solution to a higher-order linear differential equation be valid, it must have linear 

independence. For a set of functions to be linearly independent, scalars  𝑣1, 𝑣2, 𝑎𝑛𝑑 𝑣𝑛  of 

Equation 3 should all be 0 (Xu, 2011). 

𝑣1𝑦1 + 𝑣2𝑦2 + ⋯ + 𝑣𝑛𝑦𝑛 = 0                                             (3) 

Linear independence is crucial in determining the general solution to a differential equation, as 

it guarantees that the solution is not redundant (Coddington & Levinson, 1955). 

Moreover, their Wronskian must not be equal to zero. The Wronskian can be obtained by 

getting the determinant of a square matrix with the original functions on the first row and its 

consecutive derivatives on the following rows.   

𝑊 = |

𝑦1         𝑦2

𝑦′1        𝑦′2

⋯       𝑦𝑛

⋯       𝑦′𝑛

⋮ ⋮
𝑦1

(𝑛−1) 𝑦2
(𝑛−1)

⋱       ⋮
⋯ 𝑦𝑛

(𝑛−1)

|                                               (4)                                                                                      

If 𝑊 = 0, then 𝑦1, 𝑦2, 𝑎𝑛𝑑 𝑦𝑛   are considered to be linearly dependent. If 𝑊 ≠ 0, it can be 

deduced that they are linearly independent.  

1.3.  Differential Operators 

Let 𝐷 denote differentiation with respect to 𝑥. Then, 𝐷𝑘, as shown in Equation 5, refers to 

differentiating 𝑘 times with respect to 𝑥. This is true for positive integral 𝑘. 

𝐷𝑘𝑦 =
𝑑𝑘𝑦

𝑑𝑥𝑘          (5) 

Equation 6 

𝐴 = 𝑎𝐷𝑛 + 𝑎1𝐷𝑛−1 + ⋯ + 𝑎𝑛−1𝐷 + 𝑎𝑛               (6) 

is referred to as a differential operator of 𝑛𝑡ℎ  order. When this operator is applied to any 

function 𝑦, it produces Equation 7. 

𝐴𝑦 = 𝑎0
𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝑎1
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 + ⋯ + 𝑎𝑛−1
𝑑𝑦

𝑑𝑥
+ 𝑎𝑛𝑦       (7) 

The coefficients 𝑎0, 𝑎1, … , 𝑎𝑛 in the operator 𝐴 may be constants or functions of 𝑥. 

1.4.  Differential Operators Properties 

For constant 𝑚 and positive integral 𝑘 

𝐷𝑘𝑒𝑚𝑥 = 𝑚𝑘𝑒𝑚𝑥        (8) 

The effect of an operator upon 𝑒𝑚𝑥 can be determined. Let 𝑓(𝐷) be a polynomial in 𝐷, 
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𝑓(𝐷) = 𝑎0𝐷𝑛 + 𝑎1𝐷𝑛−1 + ⋯ + 𝑎𝑛−1𝐷 + 𝑎𝑛.     (9) 

Then 

𝑓(𝐷)𝑒𝑚𝑥 = 𝑎0𝑚𝑛𝑒𝑚𝑥 + 𝑎1𝑚𝑛−1𝑒𝑚𝑥 + ⋯ + 𝑎𝑛−1𝑚𝑒𝑚𝑥 + 𝑎𝑛𝑒𝑚𝑥,           (10) 

Therefore, 

𝑓(𝐷)𝑒𝑚𝑥 = 𝑒𝑚𝑥𝑓(𝑚).            (11) 

If 𝑚 satisfies the equation 𝑓(𝑚) = 0, then in light of Equation 11, 

𝑓(𝐷)𝑒𝑚𝑥 = 0        (12) 

Equation 13 and Equation 14 demonstrate how the operator 𝐷 − 𝑎 affects the product of a 

function 𝑦 and 𝑒𝑎𝑥.  

(𝐷 − 𝑎)(𝑒𝑎𝑥𝑦) = 𝐷(𝑒𝑎𝑥𝑦) − 𝑎𝑒𝑎𝑥𝑦      (13) 

= 𝑒𝑎𝑥𝐷𝑦                                              (14) 

Subsequently, the use of the operator (𝐷 − 𝑎)2 is shown on Equation 15 and Equation 16. 

(𝐷 − 𝑎)2(𝑒𝑎𝑥𝑦) = (𝐷 − 𝑎)(𝑒𝑎𝑥Dy)       (15) 

= 𝑒𝑎𝑥𝐷2𝑦                      (16) 

Repeating the process, the effect of the operator (𝐷 − 𝑎)𝑛 leads to: 

(𝐷 − 𝑎)𝑛(𝑒𝑎𝑥𝑦) = 𝑒𝑎𝑥𝐷𝑛𝑦                                             (17) 

By linearity of differential operators, it can be concluded that when 𝑓(𝐷)  represents a 

polynomial in 𝐷, then 

𝑒𝑎𝑥𝑓(𝐷)𝑦 = 𝑓(𝐷 − 𝑎)[𝑒𝑎𝑥𝑦]                                        (18) 

1.5.  The Auxiliary Equation Yielding Distinct Roots 

Linear Homogeneous Equations that have constant coefficients, 

𝑎0
𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝑎1
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 + ⋯ 𝑎𝑛−1
𝑑𝑦

𝑑𝑥
+ 𝑎𝑛𝑦 = 0                                (19) 

can be rewritten as 

𝑓(𝐷)𝑦 = 0                                                     (20) 

where 𝑓(𝐷) is a linear differential operator. If the auxiliary equation 𝑓(𝑚) = 0 has any root 

𝑚, then  
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𝑓(𝐷)𝑒𝑚𝑥 = 0                                                   (21) 

It means that 𝑦 =  𝑒𝑚𝑥 is a solution of Equation 20. 

𝑓(𝑚) = 0                                                  (22) 

Equation 22 is called the auxiliary equation corresponding to Equation 19 and Equation 20. 

If the auxiliary equation of Equation 19 has distinct roots  𝑚1, 𝑚2, … , 𝑚𝑛 , then its general 

solution can be written as 

𝑦 = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥 + ⋯ + 𝑐3𝑒𝑚𝑛𝑥.                                    (23) 

Here, 𝑐1, 𝑐2, and 𝑐𝑛 are arbitrary constants. Moreover, the functions corresponding to them are 

linearly independent. 

1.6.  Auxiliary Equation Yielding Repeated Roots 

Assume that in Equation 20, the operator 𝑓(𝐷) contains factors that repeat. That means that 

the auxiliary equation shown in Equation 22 has repeated roots. Thus, the method used in 

Section 1.5 does not produce the general solution. Let the auxiliary equation possess three roots 

that are equal: 𝑚1 = 𝑏, 𝑚2 = 𝑏, and 𝑚3 = 𝑏. The solution this will yield is: 

𝑦 = 𝑐1𝑒𝑏𝑥 + 𝑐2𝑒𝑏𝑥 + 𝑐3𝑒𝑏𝑥                                           (24) 

𝑦 = (𝑐1 + 𝑐2 + 𝑐3)𝑒𝑏𝑥                                                  (25) 

Equation 25 can be rewritten as 

𝑦 = 𝑐4𝑒𝑏𝑥                                                           (26) 

where 𝑐4 = 𝑐1 + 𝑐2 + 𝑐3. Thus, this method only produced one solution. The difficulty exists 

because the three solutions that correspond to 𝑚1 = 𝑚2 = 𝑚3 = 𝑏 are linearly dependent.  

A method to obtain an 𝑛   number of linearly independent solutions that correspond to 𝑛 

identical roots of the auxiliary equation is required. Suppose that Equation 22 has 𝑛 equal roots 

𝑚1 = 𝑚2 = ⋯ = 𝑚𝑛                                                    (27) 

Therefore, the operator 𝑓(𝐷) should have a factor (𝐷 − 𝑏)𝑛. Multiple linearly independent 𝑦′s 

must be found for which 

(𝐷 − 𝑏)𝑛𝑦 = 0                                                       (28) 

In Equation 18, we supposed that 𝑓(𝐷) = 𝐷𝑛 and 𝑦 = 𝑥𝑘. We can obtain Equation 29 by using 

the Exponential Shift. 
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(𝐷 − 𝑚)𝑛(𝑥𝑘𝑒𝑚𝑥) = 𝑒𝑚𝑥𝐷𝑛𝑥𝑘                                       (29) 

However, 𝐷𝑛𝑥𝑘 = 0 for 𝑘 = 0, 1, 2, … , 𝑛 − 1, which results to Equation 30. 

(𝐷 − 𝑚)𝑛(𝑥𝑘𝑒𝑚𝑥) = 0     𝑓𝑜𝑟 𝑘 = 0, 1, 2, … , (𝑛 − 1)                         (30) 

Because of the existence of repeated roots, 𝑚 = 𝑏. As a result, Equation 30 can be also be 

written as 

(𝐷 − 𝑏)𝑛(𝑥𝑘𝑒𝑏𝑥) = 0     𝑓𝑜𝑟 𝑘 = 0, 1, 2, … , (𝑛 − 1)               (31) 

The functions 𝑦𝑘 = 𝑥𝑘𝑒𝑏𝑥 with 𝑘 = 0, 1, 2, … , (𝑛 − 1) are linearly independent because each 

function includes a distinct power of 𝑥 multiplied by 𝑒𝑎𝑥, ensuring no linear combination of 

these functions can be simplified to zero unless all coefficients are zero. 

The general solution of Equation 28 is 

𝑦 = 𝑐1𝑒𝑏𝑥 + 𝑐2𝑥𝑒𝑏𝑥 + ⋯ + 𝑐𝑛𝑥𝑛−1𝑒𝑏𝑥                            (32) 

Moreover, if 𝑓(𝐷) has the factor (𝐷 − 𝑏)𝑛, then Equation 28 can take the form 

𝑔(𝐷)(𝐷 − 𝑏)𝑛𝑦 = 0.                                             (33) 

Here, 𝑔(𝐷)  includes every factor of 𝑓(𝐷) except (𝐷 − 𝑏)𝑛 . Then any of the solutions of 

Equation 28 also satisfies Equation 33, and therefore, Equation 20.  

For each root 𝑚𝑖 of the auxiliary equation, which may either be distinct or among a set of 

identical roots, there exists a corresponding solution 

𝑦𝑖 = 𝑐𝑖𝑒
𝑚𝑖𝑥.                                                 (34) 

Meanwhile, for 𝑛 equal roots 𝑚1, 𝑚2, … , 𝑚𝑛, each equal to 𝑏, the corresponding solutions are 

𝑦 = 𝑐1𝑒𝑏𝑥, 𝑐2𝑥𝑒𝑏𝑥, … , 𝑐𝑛𝑥𝑛−1𝑒𝑏𝑥                                 (35) 

The collection of solutions in Equation 35 includes the appropriate number of elements, which 

corresponds to the order of the differential equation. For every root of the auxiliary equation, 

there is a corresponding solution. The obtained solutions are therefore linearly independent 

(Rainville & Bedient, 1989). 

Determining whether a solution exists and whether it is valid on its own is one of the main 

issues when solving differential equations. At least one solution must satisfy the equation and 

the beginning circumstances in order for "existence" to be established. This is guaranteed by 

the equation's components' consistency and smoothness. On the other hand, "Uniqueness" rules 
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out other solutions by claiming that only one fits these requirements. According to Lebl, these 

foundational ideas are important because they guarantee that solutions obtained from 

mathematical models faithfully represent real-world situations and provide consistent and 

trustworthy predictions (Lebl, 2013). 

1.7.  Underlying Principles of Method of Undetermined Coefficients 

Section 1.7 discusses the theoretical background of the method of undetermined coefficients is 

discussed. Rainville & Bedient (1989) examined the principles behind this method. 

Consider 𝑓(𝐷) as a polynomial in the differential operator 𝐷. Note the equation 

𝑓(𝐷)𝑦 = 𝐹(𝑥)                                                    (36) 

The roots of the auxiliary equation 𝑓(𝑚) = 0 are denoted as 

𝑚 = 𝑚1, 𝑚2, … , 𝑚𝑛                                               (37) 

Equation 38 provides the general solution 

𝑦 = 𝑦𝑐 + 𝑦𝑝                                                       (38) 

where 𝑦𝑐 is determined using the roots 𝑚 in Equation 37 and 𝑦𝑝 denotes a particular solution 

of Equation 36 that remains to be determined. 

Suppose 𝐹(𝑥), the right-hand side of Equation 36, is a particular solution of a homogeneous 

linear differential equation with constant coefficients: 

𝑔(𝐷)𝐹 = 0                                                        (39) 

and its auxiliary equation yields the roots 

𝑚′ = 𝑚′1, 𝑚′2, … , 𝑚′𝑘                                               (40) 

Note that the values in Equation 40 can be determined by inspecting 𝐹(𝑥). 

Consider the differential equation 

𝑔(𝐷)𝑓(𝐷)𝑦 = 0.                                                     (41) 

Equation 41 has its roots in the values of 𝑚 from Equation 37 and 𝑚’ obtained from Equation 

40 through their respective auxiliary equations. Thus, the general solution of Equation 41 

contains the 𝑦𝑐 from Equation 38. Therefore, it is of the form 

𝑦 = 𝑦𝑐 + 𝑦𝑞                                                       (42) 

Additionally, any particular solution of Equation 36 should also satisfy Equation 41. If 
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𝑓(𝐷)(𝑦𝑐 + 𝑦𝑞) = 𝐹(𝑥),                                            (43) 

then 𝑓(𝐷)𝑦𝑞 = 𝐹(𝑥) since 𝑓(𝐷)𝑦𝑐 = 0. After removing 𝑦𝑐  from Equation 41, a function 𝑦𝑞 is 

obtained whose coefficients can be adjusted to satisfy Equation 36 for specific numerical 

values. By appropriately determining the coefficients in 𝑦𝑞, it can be ensured that 𝑦𝑞 equals 𝑦𝑝. 

This determination of coefficients can be accomplished through straightforward algebraic 

methods. 

1.8.  Allowable Functions 

The method of undetermined coefficients relies on making an informed assumption about the 

structure of the particular solution. Table 1 displays the general form of the right member 𝐹(𝑥) 

along with their corresponding prediction for the particular solution. The specific functions that 

this method can handle are those that have a finite family of derivatives.  

Table 1. Functions suitable for method of undetermined coefficients 

F(x) yp 

aemx Aemx 

a cos(x) A cos(x) + B sin (x) 

b sin (x) A cos(x) + B sin (x) 

a cos(x) + b sin (x) A cos(x) + B sin (x) 

nth degree polynomial Anx
n + An-1x

n-1 +…+ A1x + A0 

where, A,B,a,b are arbitrary constants 

 

2.  Methodology 

This section solves one higher-order linear differential equation using undetermined 

coefficients method. 

Consider the third-order linear nonhomogeneous differential equation 

𝑦′′′ − 3𝑦′′ + 3𝑦′ − 𝑦 = 𝑥𝑒𝑥                                            (44) 

It has an auxiliary equation 

𝑚3 − 3𝑚2 + 3𝑚 − 1 = 0. 

Notice that this can be simplified and rewritten as 

(𝑚 − 1)3 = 0 
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(𝑚 − 1)(𝑚 − 1)(𝑚 − 1) = 0 

Equating each factor to 0, we obtain the roots. Therefore, the roots of Equation 44 are 𝑚 =

1,1,1. 

The general solution of Equation 44 follows the form of Equation 38. 

Since the auxiliary equation yields repeated roots, 𝑦𝑐 follows the form of Equation 23.  

𝑦𝑐 = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑥𝑒𝑚2𝑥+𝑐3𝑥2𝑒𝑚3𝑥 

Since 𝑚1 = 𝑚2 = 𝑚3 = 1, 

𝑦𝑐 = 𝑐1𝑒𝑥 + 𝑐2𝑥𝑒𝑥+𝑐3𝑥2𝑒𝑥                                          (45) 

Equation 44 features a right-hand side composed of an exponential function and an algebraic 

function multiplied together. Both functions have a limited number of derivatives, thus 

allowing for the application of the method of undetermined coefficients. 

Initial assumption for 𝑦𝑝 is 

𝑦𝑝 = 𝑒𝑥(𝐴𝑥 + 𝐵) 

𝑦𝑝 = 𝐴𝑥𝑒𝑥 + 𝐵𝑒𝑥                                                   (46) 

However, Equation 46 appears to be a linear combination of Equation 45. Therefore, Equation 

46 is not a valid guess for 𝑦𝑝. To ensure linear independence, the variable 𝑥 may be multiplied 

to the predicted 𝑦𝑝 to prevent a linear combination of 𝑦𝑐. 

𝑦𝑝 = [𝑒𝑥(𝐴𝑥 + 𝐵)]𝑥3 

results to 

𝑦𝑝 = 𝐴𝑥4𝑒𝑥 + 𝐵𝑥3𝑒𝑥                                                   (47) 

Equation 47 is the appropriate prediction for 𝑦𝑝 because it does not yield a linear combination. 

Since Equation 44 is a third-order differential equation, 𝑦𝑝 must be differentiated three times. 

𝑦𝑝
′ = 𝑒𝑥(𝐴𝑥4 + 4𝐴𝑥3 + 𝐵𝑥3 + 3𝐵𝑥2)                                      (48) 

𝑦𝑝
′′ = 𝑒𝑥(𝐴𝑥4 + 8𝐴𝑥3 + 𝐵𝑥3 + 6Bx2 + 12𝐴𝑥2 + 6Bx)                        (49) 

𝑦𝑝
′′′ = 𝑒𝑥(𝐴𝑥4 + 𝐵𝑥3 + 12𝐴𝑥3 + 36𝐴𝑥2 + 9𝐵𝑥2 + 18Bx + 24Ax + 6B)             (50) 

Equations 47, 48, 49, and 50 are substituted to Equation 44, which yields; 
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𝑦𝑝
′′′ − 3𝑦𝑝

′′ + 3𝑦𝑝
′ − y𝑝 = x𝑒𝑥 

𝑒𝑥(𝐴𝑥4 + 𝐵𝑥3 + 12𝐴𝑥3 + 36𝐴𝑥2 + 9𝐵𝑥2 + 18Bx + 24Ax + 6B)

− 3𝑒𝑥(𝐴𝑥4 + 8𝐴𝑥3 + 𝐵𝑥3 + 6Bx2 + 12𝐴𝑥2 + 6Bx)

+ 3𝑒𝑥(𝐴𝑥4 + 4𝐴𝑥3 + 𝐵𝑥3 + 3𝐵𝑥2) −  𝑒𝑥(𝐴𝑥4 + 𝐵𝑥3) = 𝑥𝑒𝑥 

which will simplify to 

24𝐴𝑥 + 6𝐵 = 𝑥 

Equating the coefficients of the linearly independent terms: 

𝑥: 24𝐴 = 1 

𝐴 =
1

24
 

𝑥0: 6𝐵 = 0 

𝐵 = 0 

Substituting the obtained values of 𝐴 and 𝐵 into Equation 47, 

𝑦𝑝 =
1

24
𝑥4𝑒𝑥                                                   (51) 

Since 

𝑦 = 𝑦𝑐 + 𝑦𝑝, 

the general solution of Equation 44 is the linearly independent 

𝑦 = 𝑐1𝑒𝑥 + 𝑐2𝑥𝑒𝑥+𝑐3𝑥2𝑒𝑥 +
1

24
𝑥4𝑒𝑥. 

An advantage of this method is it makes the problem solvable by simple algebra (Agarana & 

Akinlabi, 2019). 

 

3.  Results and Discussion 

The method of undetermined coefficients is a simple method, only requiring skills in 

differentiation and algebra. This makes it an accessible approach for those with a basic 

understanding of differential equations (Simmons & Krantz, 2007). 

It works for differential equations with constant coefficients.  However, its use is limited 

because it requires that 𝐹(𝑥) has functions that have a finite family of derivatives. This is only 
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applicable to algebraic, sinusoidal, and exponential functions. The functions mentioned above 

may sometimes be products of one another (University of Alabama in Huntsville, 2019). This 

is a necessary requirement because solving for 𝑦𝑝 involves predicting its form, and this is only 

feasible for functions whose derivatives have predictable patterns.  

If 𝐹(𝑥) consists of products that include an exponential function, the general rule is to first 

remove the exponential component and write down the guess for the remaining portion of the 

function. After this, the exponential part is reattached without any leading coefficient 

(Dawkins, 2022). 

Additionally, when guessing for 𝑦𝑝 , one may encounter difficulties when predicting its 

appropriate form. This happens when 𝐹(𝑥) is a solution of the differential equation itself. The 

initial guess for 𝑦𝑝 may yield a linear combination of 𝑦𝑐, such as the case in Section 2. In such 

situations, the variable 𝑥  is multiplied to the initial guess for 𝑦𝑝 however many times necessary 

to prevent a linear combination. The University of Utah (2021) calls this the ‘fixup rule’. If the 

initial trial solution produces duplicates of 𝑦𝑐, then it has to be multiplied by 𝑥 until it is no 

longer a duplicate solution. This is a disadvantage of this method, as this issue can complicate 

the solution process. Thus, it requires careful consideration (Apostol, 1969). 

 

4.  Conclusion 

While the method of undetermined coefficients is revered for its simplicity and accessibility, 

its effectiveness depends on the existence of finite families of derivatives of the inhomogeneous 

term. Moreover, it demands a cautious approach in possible cases of linear dependence in the 

solution. Additionally, while it is a powerful tool for solving a specific class of higher-order 

linear differential equations, it also poses certain challenges. A higher-order differential 

equation may involve more complex algebra and differentiation. Therefore, determining if the 

method of undetermined coefficients is suitable for a given differential equation is crucial for 

ease and accuracy of solution. 
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